Project Icon

torchani

基于PyTorch的神经网络势能模型库 实现高精度分子动力学模拟

TorchANI是一个开源的PyTorch实现的ANI神经网络势能模型库。该项目提供高精度分子动力学模拟功能,支持ANI2x、ANI1x和ANI1ccx等多种模型参数。TorchANI具备易用API和GPU加速能力,可通过pip或conda安装。作为活跃维护的开源项目,TorchANI欢迎社区贡献。

anole - Anole实现图文交错生成的开源多模态模型
AIAnoleGithub图文生成多模态模型开源开源项目
Anole是一款开源的大型多模态模型,具备图文交错生成能力。该模型通过微调约6000张图像数据集,在Chameleon基础上实现了图像生成和理解功能。Anole支持文本到图像生成、图文交错生成、文本生成和多模态理解,为多模态AI研究提供了新的可能性。
En-transformer - 融合等变图神经网络与Transformer的创新架构
E(n)-Equivariant TransformerGithub坐标变换开源项目注意力机制神经网络蛋白质设计
En-transformer是一个创新的开源项目,结合了E(n)等变图神经网络与Transformer架构。支持原子和键类型嵌入,处理稀疏邻居,传递连续边特征。已应用于抗体CDR环设计,并可用于蛋白质骨架坐标去噪等分子建模任务。项目提供简便的安装和使用方法,适合研究人员和开发者探索。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
PyEMMA - 开源分子动力学模拟分析软件包
GithubPyEMMA分子动力学模拟开源软件开源项目数据分析马尔可夫模型
PyEMMA是一个开源的Python/C软件包,用于分析大规模分子动力学模拟数据。它提供聚类、特征化、马尔可夫状态模型等算法,支持分子动力学数据的估计、验证和分析。该工具可通过Jupyter notebook或Python脚本使用,适合分子动力学研究人员进行数据分析和建模。PyEMMA具备高性能和易用性,在分子模拟领域广受欢迎。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
efficient-kan - Kolmogorov-Arnold网络的高效实现方案
GithubKANKolmogorov-Arnold Network优化实现开源项目神经网络稀疏化
efficient-kan是一个开源项目,为Kolmogorov-Arnold神经网络(KAN)提供高效实现。项目重构了计算方法,大幅降低内存消耗并提升计算效率。通过采用权重L1正则化和可选的独立比例B样条功能,项目在保持兼容性的同时优化了性能。最新更新改进了参数初始化,在MNIST数据集上显著提升了模型表现。
pykan - 实现了Kolmogorov-Arnold网络,提升神经网络准确性和可解释性
GithubKAN可解释性开源项目数学基础机器学习神经网络
pykan项目实现了Kolmogorov-Arnold网络(KAN),这是一种在边缘应用激活函数的创新神经网络架构。KAN在多项任务中表现优于多层感知器(MLP),提高了模型准确性、参数效率和可解释性。项目提供详细教程和示例,涵盖从函数拟合到PDE求解的应用,为科学发现和数学定律探索开辟新途径。
torchio - 深度学习医疗图像处理工具集
GithubPythonTorchIO医药图像开源项目数据增强深度学习
此工具集为深度学习医疗图像处理提供高效解决方案,涵盖读取、预处理、采样、增强和写入3D医疗图像等功能。支持多种图像转换操作,包括随机仿射变换和特定领域伪影模拟。受NiftyNet启发,该项目广泛应用于医学AI研究,提升数据处理效率和模型性能。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
pytorch-llama - 基于PyTorch的LLaMA 2模型实现
GithubLLaMA 2PyTorch人工智能开源项目深度学习自然语言处理
pytorch-llama项目提供了LLaMA 2模型的PyTorch实现。该项目展示了使用PyTorch框架构建大型语言模型的过程,为开发者提供了理解和定制LLaMA 2的学习资源。通过这个项目,研究人员和工程师可以深入了解LLaMA 2的工作原理,并在此基础上进行进一步的实验和创新。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号