Project Icon

watermark_detector

图像水印检测模型,基于Google ViT基础模型

模型通过微调谷歌的ViT基础模型,用于提高图片水印检测的准确率,在评估集上取得了0.6574的准确度。训练过程中使用了最新的Transformers和Pytorch框架,包含优化参数与学习率调度,提升了训练效率。

vit-tiny-patch16-224 - 轻量级ViT模型实现高效图像分类
GithubHugging FaceHuggingfaceImageNetVision Transformer图像分类开源项目权重转换模型
vit-tiny-patch16-224是一个轻量级视觉transformer模型,专注于图像分类任务。这个模型采用16x16的patch大小和224x224的输入分辨率,在保持分类准确性的同时大幅降低了计算资源需求。其小型结构使其特别适合在资源受限环境中使用或需要快速推理的场景。值得注意的是,该模型是基于Google的ViT架构,由第三方研究者使用timm仓库的权重进行转换和发布。
conditional-detr-resnet-50 - 基于条件机制增强ResNet-50的图像检测模型
COCO 2017Conditional DETRGithubHuggingfaceResNet-50对象检测开源项目快速训练收敛模型
Conditional DETR结合了ResNet-50,通过条件交叉注意力机制加速COCO 2017数据集上的训练收敛。在目标检测任务中,该模型解决了训练收敛缓慢的问题,提升了特征提取和目标分类的效率。通过条件空间查询机制,模型能够更高效地定位目标区域,提高了训练速度。在R50和R101骨干网下加速6.7倍,DC5-R50和DC5-R101下加速10倍,并支持PyTorch。
Restormer - 高效Restormer Transformer实现高分辨率图像修复
GithubRestormerTransformer图像去噪图像去雨开源项目高分辨率图像恢复
研究提出了一种名为Restormer的高效Transformer模型,通过多头注意力和前馈网络设计,实现了长距离像素交互,适用于大图像处理。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)和高斯及真实图像去噪等任务中表现优异。Restormer的训练代码和预训练模型已发布,并被选为CVPR 2022的口头报告。用户可通过Colab或命令行测试预训练模型。
vits2_pytorch - 单阶段文本到语音转换的效率与质量提升
GithubVITS2单阶段模型对抗学习开源项目文本转语音架构设计
VITS2_pytorch是一款先进的单阶段文本到语音转换模型,采用对抗学习和架构设计改进前代产品。这一最新的非官方实现版本,旨在通过增强模型结构和训练机制,有效提升语音自然度和特征相似性,同时显著降低对音素转换的依赖,从而提高训练和推断的效率。该项目还为专业人士提供了预训练模型和多种语言的样本音频,支持开箱即用的转换学习。
LLaVAR - 优化视觉指令微调的文本丰富图像理解模型
GithubLLaVAROCR能力多模态大语言模型开源项目文本丰富图像理解视觉指令微调
LLaVAR项目致力于增强大型语言模型对文本丰富图像的理解能力。通过改进视觉指令微调方法,该项目显著提升了模型在OCR相关任务上的表现。LLaVAR开源了模型权重、训练数据,并提供了环境配置、训练脚本和评估方法,为相关研究和开发提供了全面支持。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
DN-DETR - 创新查询去噪技术加速目标检测训练
DETRGithub开源项目注意力机制深度学习目标检测计算机视觉
DN-DETR通过创新的查询去噪技术加速DETR目标检测模型训练。该方法仅需50%训练周期即可达到基线模型性能,大幅提高训练效率。项目开源了DN-DETR、DN-Deformable-DETR等多个模型实现,并提供详细的模型库、使用指南和安装说明,便于研究者复现结果或将去噪训练应用于其他模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号