Project Icon

deep-learning-containers

高效优化的TensorFlow、PyTorch与MXNet深度学习环境

AWS Deep Learning Containers提供预配置的Docker镜像,支持TensorFlow、PyTorch和MXNet的模型训练与服务。集成了Nvidia CUDA和Intel MKL库,优化了GPU和CPU实例性能。这些容器已在Amazon SageMaker、EC2、ECS和EKS上进行了测试和验证,确保广泛应用和稳定性能。了解更多关于兼容镜像的信息,助力高效开发与部署AI模型。

Daily-DeepLearning - 全面计算机基础、Python应用、数据科学及机器学习指南
GithubPython开源项目操作系统数据结构机器学习深度学习
提供丰富的计算机科学教育资源,涵盖数据结构、操作系统、计算机网络等基础课程。Python和数据科学部分包括numpy、pandas、matplotlib等流行库的使用教程。机器学习和深度学习部分涉及逻辑回归、集成学习、RNN、CNN等理论及实践内容,适合初学者及进阶学习者掌握计算机科学与人工智能技术。
Efficient-Computing - 华为诺亚方舟实验室开发的AI模型优化技术集合
GithubHuawei Noah's Ark Lab开源项目模型压缩深度学习神经网络高效计算
Efficient-Computing项目旨在提高AI模型的计算效率和性能。这个由华为诺亚方舟实验室开发的高效计算方法集合包含多个子项目,涵盖了模型压缩、二值神经网络、知识蒸馏、网络剪枝、模型量化、自监督学习、训练加速、目标检测和低层视觉等领域的技术。该项目为AI研究和开发提供了多样化的工具和资源。
ML-Notebooks - 机器学习笔记本资源库,支持快速搭建和扩展
Github人工智能代码示例开源项目机器学习深度学习自然语言处理
ML-Notebooks为不同的机器学习任务和应用提供了一系列精简且易于扩展的笔记本。项目整合了Codespaces技术,用户仅需几步简单配置,便可启动一个配备完整依赖项的开发环境,非常适合教育和研究使用。从基础入门到深入探索如PyTorch、GNN及GANs等前沿技术,应有尽有。
awesome-kubeflow - Kubeflow开源生态系统 云原生机器学习工作流平台
GithubKubeflowKubernetesMLOps云原生开源项目机器学习工作流
Awesome-kubeflow收录了Kubeflow相关的优质项目和资源。作为CNCF孵化项目,Kubeflow致力于简化Kubernetes上的机器学习工作流部署。该列表涵盖Kubeflow核心组件、生态系统项目、书籍、博客和视频等全方位资源,适合开发者和数据科学家了解Kubeflow并应用于MLOps实践。
DevOps-Projects - DevOps项目展示自动化部署与容器化实践
CI/CDDevOpsGithub云构建容器化开源项目自动化部署
本项目汇集了多个DevOps实践案例,涵盖自动化Web开发环境、Docker容器部署、嵌套容器化、CI/CD环境管理及Terraform自动化CloudBuild等领域。项目整合了Git/GitHub、Jenkins和Docker等主流技术,展示了现代化的部署流程和环境管理解决方案。通过具体实例演示了DevOps在实际应用中的价值,包括提高开发效率、简化部署流程和优化资源管理。这些项目为有意深入了解DevOps实践的开发者和运维人员提供了宝贵的参考资料。
Deep-Learning-in-Production - 将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境的介绍
C++GithubPyTorchTensorFlow开源项目深度学习部署
项目详细介绍了如何将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境,包括模型转换、API集成、服务器运作及跨框架策略。这一资源库提供实际细节和案例,帮助开发者全面了解部署流程,并通过Flask、C++、Go等多种技术实现模型应用。
awesome-tensorflow - TensorFlow资源大全 丰富的开源深度学习工具库
GithubTensorFlow人工智能开源项目机器学习深度学习神经网络
这是一个全面的TensorFlow资源列表,涵盖教程、模型、项目、工具等多个方面。开发者和研究人员可以在此找到丰富的学习和应用资源,从入门到进阶。列表内容包括实验、库、视频、论文等,适合不同层次的TensorFlow使用者。这个资源集为探索TensorFlow的各种可能性提供了便利。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
deeplearning4j - 多语言与硬件兼容的JVM深度学习框架
DataVecEclipse Deeplearning4JGithubND4JSameDiff开源项目深度学习
DL4J生态系统为JVM应用提供全方位深度学习支持,覆盖数据预处理、模型构建与优化。支持多种编程语言和硬件平台,包括DL4J、ND4J、SameDiff和DataVec模块,兼容Keras和TensorFlow模型并支持分布式训练。适用于Windows、Linux和macOS,提升JVM深度学习应用能力。了解更多信息,请访问官方文档。
awesome-production-machine-learning - 机器学习生产部署、监控和安全保护的工具列表
Github开源项目数据版本控制机器学习模型解释生产环境部署隐私保护
这个开源库列表综合提供了机器学习生产部署、监控和安全保护的工具,涵盖隐私保护、模型与数据版本管理、训练协调等多个关键领域,是机器学习专业人员和爱好者优化项目实施和管理的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号