Project Icon

gluonts

基于深度学习的概率时间序列建模工具包

GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。

statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
moment - 时间序列分析基础模型 多任务多领域应用
GithubMOMENT基础模型多任务开源项目时间序列预训练
MOMENT是一个开源的时间序列分析基础模型家族,为多任务、多数据集和多领域应用而设计。该模型在大规模时间序列数据上预训练,可处理预测、分类、异常检测和插补等任务。MOMENT能捕捉时间序列的内在特征,学习有意义的数据表示,在少量标记数据的情况下也表现出色。项目提供预训练模型、教程和研究代码,为时间序列分析提供了实用工具。
probability - TensorFlow生态系统中的概率推理与统计分析工具
GithubTensorFlow Probability分布计算开源项目概率推理深度学习统计分析
TensorFlow Probability 是一个概率推理与统计分析库,作为 TensorFlow 生态系统的一部分,结合了概率方法与深度网络。其功能包括自动微分的梯度推断,以及通过 GPU 和分布式计算实现对大规模数据集和模型的可扩展性。主要组件包括概率分布、可逆变换、联合分布、概率层和多种概率推断算法,如马尔可夫链蒙特卡洛和变分推断。提供详细教程和案例,帮助用户解决实际问题。
TSDB - 高效便捷的时间序列数据集加载库
GithubPyPOTSTSDB开源工具开源项目数据挖掘时间序列数据集
TSDB是一个时间序列数据集加载库,支持172个公开数据集的一键加载。该工具简化了研究人员和工程师的数据获取流程,使他们能专注于数据处理。TSDB具备数据下载、加载和缓存管理功能,并支持缓存目录迁移。作为PyPOTS工具箱的组成部分,TSDB为时间序列数据挖掘提供了基础支持。
Large-Time-Series-Model - 大规模生成式预训练时间序列模型
GithubTimerTransformer大规模数据集开源项目时间序列模型预训练
Timer是一款基于生成式预训练Transformer的大规模时间序列模型。该模型在包含10亿时间点的UTSD数据集上预训练,可用于预测、插值和异常检测等多项任务。Timer采用解码器架构,支持灵活序列长度,在少样本场景下表现优异。项目开源了模型代码、数据集和预训练权重,为时间序列大模型研究奠定基础。
chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号