Project Icon

pytorch-sentiment-analysis

使用PyTorch进行电影评论情感分析的教程

该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。

pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
sentiment-analysis - 多种中文情感分析方法及实现途径
GithubSentiment Analysis开源项目情感分析文本分类深度学习自然语言处理
该页面介绍了中文情感分析的三种类型:基于情感词典、传统机器学习和深度学习的方法,并展示了四种实现方式:词典法、Bayes法、ALBERT与TextCNN结合及其emoji扩展。适合自然语言处理和文本分类爱好者深入了解情感分析的实现手段。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
pytorch-seq2seq - 使用PyTorch实现序列到序列模型的教程
GithubPyTorchseq2seq开源项目机器翻译神经网络翻译
该项目提供一系列使用PyTorch实现seq2seq模型的教程,特别是对德语到英语的翻译。教程涵盖了seq2seq网络的基础、编码器-解码器模型、注意机制以及使用spaCy进行数据分词,并提供了详细的代码和示例,帮助学习者深入理解和应用相关技术。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
sentiment_analysis_model - BERT模型的情感分析应用
BERTGithubHuggingface开源项目情感分析无监督学习模型模型描述预训练
该情感分析模型基于BERT,在大规模英语语料的自监督训练基础上,具备双向语句理解能力,经过精细调优,专注于文本分类任务,该项目微调BERT模型以进行情感分析,可用于自动提取文本中的情感特征。
emotion_text_classifier - DistilRoBERTa微调的多类情感分析模型
DistilRoBERTaGithubHuggingface开源项目情感分类机器学习模型深度学习自然语言处理
这是一个基于DistilRoBERTa微调的情感分类模型,能够识别文本中的七种情绪,包括六种基本情绪和一种中性情绪。模型在《老友记》剧本数据集上进行了微调,特别适合分析电视剧和电影的对话文本。支持的情绪标签包括愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶,为自然语言处理中的情感分析任务提供了实用工具。
torchMoji - 基于表情符号的情感分析深度学习模型
DeepMojiGithubTorchMoji开源项目情感分析深度学习自然语言处理
TorchMoji是PyTorch实现的DeepMoji模型,通过分析12亿条带表情符号的推文来理解语言表达情感的方式。该模型利用迁移学习在多个情感相关的文本建模任务中实现了优秀性能。项目包含预训练模型、数据处理工具和示例代码,方便研究者和开发者将情感分析应用于各种文本理解任务。TorchMoji模型可用于情感分类、情感强度预测和讽刺检测等任务,为自然语言处理研究和应用提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号