Project Icon

model-vs-human

用于评估人类与机器视觉差距的Python工具箱

modelvshuman是一个用于评估人类与机器视觉差距的Python工具箱。支持测试包括PyTorch和TensorFlow在内的多种模型,覆盖17个人类比较数据集。项目提供安装指南、示例代码、模型库和数据集加载方式,帮助快速入门并进行自定义模型评估。详细信息请访问项目主页。

vision - TorchVision 计算机视觉库 提供数据集模型和图像处理功能
GithubPyTorchtorchvision图像处理开源项目深度学习计算机视觉
TorchVision是PyTorch生态系统的计算机视觉库,提供常用数据集、模型架构和图像变换功能。它支持torch张量和PIL图像后端,具备视频处理能力。该库同时提供Python和C++ API,适用于各种计算机视觉任务。TorchVision版本与PyTorch和Python版本兼容,持续更新以支持最新技术。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
HPSv2 - 文本到图像生成模型评估的全面基准测试框架
GithubHPS v2人类偏好评分图像生成模型基准测试开源项目文本到图像合成
HPSv2是一个评估文本到图像生成模型的先进基准测试框架。该框架基于大规模人类偏好数据集HPDv2训练,可准确预测人类对生成图像的偏好。HPSv2提供公平、稳定且易用的评估方法,涵盖动画、概念艺术、绘画和照片四种风格。研究人员可利用HPSv2比较不同模型性能或评估自研模型。项目提供PyPI包和在线演示,便于快速上手使用。
gluon-cv - 计算机视觉领域的深度学习模型工具包,支持PyTorch和MXNet框架
GithubGluonCV图像分类对象检测开源项目深度学习计算机视觉
GluonCV是一个面向工程师、研究人员和学生的计算机视觉深度学习工具包,支持快速原型设计。其主要功能包括可复现SOTA结果的训练脚本、对PyTorch和MXNet框架的支持、大量预训练模型,以及简化实现的API设计和社区支持。用户还可以通过AutoGluon执行图像分类和目标检测任务。
benchmark - 开源基准测试集评估PyTorch性能
GithubPyTorch基准测试安装开源项目性能评估模型
PyTorch Benchmarks是评估PyTorch性能的开源基准测试集。它提供修改过的流行工作负载、标准化API和多后端支持。项目包含安装指南、多种基准测试方法和低噪声环境配置工具。支持自定义基准测试和库集成。通过夜间CI运行,持续评估PyTorch最新版本性能。
pytorch-image-models - 全面的PyTorch图像模型集合
GithubPyTorch图像模型开源项目深度学习神经网络计算机视觉
pytorch-image-models是一个综合性PyTorch图像模型库,提供最新计算机视觉模型、预训练权重和训练脚本。库中包含CNN和Transformer等多种架构,支持迁移学习和特征提取。项目不断更新,近期新增MobileNetV4模型并优化现有模型性能。该库为计算机视觉研究和开发提供了丰富的工具和资源。
evaluate - 多框架兼容的机器学习评估工具库
EvaluateGithub开源项目指标机器学习模型比较评估
evaluate是一个开源的机器学习评估工具库,支持Numpy、Pandas、PyTorch、TensorFlow和JAX等多种框架。它提供了数十种涵盖自然语言处理和计算机视觉等领域的常用评估指标。用户可以使用evaluate进行模型评估、性能对比和结果报告。该库还支持创建新的评估模块并推送至Hugging Face Hub,便于比较不同指标的输出。evaluate的其他特点包括类型检查、指标卡片和社区指标功能,为研究人员和开发者提供了全面的模型评估支持。
IQA-PyTorch - 纯Python和PyTorch图像质量评估工具箱
GPU加速GithubIQAPyTorch图像质量评估开源项目纯Python
IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。
torchlm - 面向人脸关键点检测的开源工具包
Githubtorchlm人脸关键点检测开源项目数据增强模型训练深度学习
torchlm是一个开源的人脸关键点检测工具包,提供训练、评估、导出和推理功能。它包含100多种数据增强方法,支持30多种原生关键点增强,可与torchvision和albumentations集成。torchlm实现了PIPNet等先进模型,在多个基准数据集上性能出色。该项目简化了人脸关键点检测的开发流程,适用于研究和实际应用。
benchmark_v0 - 基于PytorchModelHubMixin的Hugging Face Hub模型集成
GithubHubHuggingfacePyTorchPytorchModelHubMixin开源项目模型集成
该模型展示了PytorchModelHubMixin在Hugging Face Hub上的应用。通过这种集成,开发者可以方便地推送和共享PyTorch模型。尽管目前缺乏具体的库和文档信息,但该项目凸显了AI开发中模型共享和协作的价值。这种集成方式简化了模型部署流程,有助于促进AI社区的知识交流。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号