Project Icon

model-vs-human

用于评估人类与机器视觉差距的Python工具箱

modelvshuman是一个用于评估人类与机器视觉差距的Python工具箱。支持测试包括PyTorch和TensorFlow在内的多种模型,覆盖17个人类比较数据集。项目提供安装指南、示例代码、模型库和数据集加载方式,帮助快速入门并进行自定义模型评估。详细信息请访问项目主页。

TF-SimpleHumanPose - 2D多人体姿态估计和追踪的简易基线方法
GithubMS COCOTensorFlow姿态估计开源项目简单基线跟踪
该项目是利用TensorFlow实现的2D多人体姿态估计与追踪代码库,兼容多个数据集如MPII、PoseTrack 2018和MS COCO 2017。其代码简洁灵活,提供训练、测试和可视化功能,并生成与MS COCO和PoseTrack兼容的输出文件。在CUDA和cuDNN环境的Ubuntu系统上进行多GPU训练和测试。
panoptic-toolbox - PanopticStudio多视角动作捕捉数据处理工具箱
3D关键点GithubPanopticStudio多视角系统开源项目数据集骨骼提取
PanopticStudio Toolbox是一款用于处理多视角人体动作捕捉数据的开源工具箱。它提供了下载、提取和可视化Panoptic Studio数据的功能,包括高清视频和3D关键点数据。该工具箱支持Python和Matlab,可实现3D关键点可视化和图像重投影。此外,它还包含KinopticStudio子系统工具和haggling数据集处理功能。
mmdetection - MMDetection:基于PyTorch的高效目标检测工具箱
GithubMM-Grounding-DINOMMDetectionOpenMMLabPyTorchRTMDet开源项目
MMDetection是一款专为目标检测、实例分割和全景分割任务设计的工具箱,采用模块化设计,支持多种检测任务,具备高效GPU运算能力。其性能与其他顶级代码库相媲美,且不断保持前沿。结合COCO挑战赛冠军经验,MMDetection提供先进的检测结果,并与MMEngine和MMCV无缝整合,进一步提升研究和应用效果。最新的RTMDet模型在参数-准确率优化及实时实例分割和旋转目标检测上表现出色。
ImageAI - 使用简便的代码实现深度学习和计算机视觉功能的开源Python库
GithubImageAI对象检测开源项目深度学习自定义模型训练计算机视觉
ImageAI是一款开源的Python库,帮助开发者使用简便的代码实现深度学习和计算机视觉功能。该库支持图像预测、目标检测、视频检测及对象跟踪等多种功能。新版本引入了PyTorch后端和TinyYOLOv3模型训练,提升了性能并扩展了功能。用户还可以训练自定义模型识别新对象。有关如何安装和使用ImageAI的详细信息,请参阅项目文档和指南。
HallusionBench - 探索视觉语言模型的幻觉与错觉问题
AI评估GithubHallusionBench图像理解多模态模型开源项目视觉语言模型
HallusionBench是一个诊断视觉语言模型中语言幻觉和视觉错觉的测试集。通过图像-文本推理任务,它挑战了GPT-4V和LLaVA-1.5等顶级多模态模型。项目提供案例分析,揭示模型局限性,为改进提供见解。HallusionBench设有公开评测基准,欢迎研究人员贡献失败案例,推动多模态AI发展。
myvision - 免费在线图像标注工具
COCO-SSDGithubMyVision图像注释工具开源项目数据集机器学习
MyVision是一款免费在线图像标注工具,旨在生成计算机视觉机器学习训练数据。它具有快速标注、多种数据集格式支持和现有项目导入功能。还利用COCO-SSD预训练模型自动标注对象,保障数据隐私。无需任何设置,只需打开index.html文件即可使用。适用于大数据集的高效工作流程,并支持英文和中文。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
deepdataspace - 开源计算机视觉数据集工具 提供可视化 标注和分析功能
DeepDataSpaceGithub开源数据集工具开源项目数据可视化数据标注模型分析
DeepDataSpace是一个开源计算机视觉数据集工具,提供交互式数据可视化、探索和智能标注功能。支持多平台和协作工作流,易于安装使用。通过直观界面帮助用户高效管理和分析大规模图像数据集,适用于CV项目开发和研究。
lm-evaluation-harness - 统一测试生成式语言模型的多任务评估框架
GPT-NeoXGithubHugging FaceLanguage Model Evaluation HarnessOpen LLM LeaderboardvLLM开源项目
该项目提供统一框架,用于评估生成式语言模型,通过60多个标准学术基准和数百个子任务实现多样化测试。更新包括新的Open LLM Leaderboard任务、内部重构、基于配置的任务创建、Jinja2提示设计支持等高级配置选项,旨在简化和优化模型评估。支持快速高效推理、商业API、本地模型和基准测试。被广泛应用于机构如NVIDIA、Cohere、BigScience等,也支撑了🤗 Hugging Face的Open LLM Leaderboard。
VLM_survey - 用于视觉任务的 AWESOME 视觉语言模型集合
GithubVision-Language Models开源项目数据集知识蒸馏视觉识别任务预训练方法
本页面详尽介绍了视觉语言模型(VLM)在视觉识别任务中的应用和发展。内容涵盖VLM的起源、常用架构、预训练目标、主流数据集及不同的预训练方式、迁移学习和知识蒸馏方法,并针对这些方法进行了详细的基准测试和分析。页面还讨论了未来研究的挑战和方向,让用户掌握VLM技术在图像分类、对象检测和语义分割等任务中的最新应用进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号