Project Icon

DeepMoji

情感分析模型,基于12亿推文训练,支持迁移学习与多情感预测

DeepMoji是一个情感分析模型,基于12亿推文数据训练,可通过迁移学习在多种情感任务中表现出色。项目包含代码示例和预训练模型,兼容Python 2.7和Keras框架,适用于情感预测和文本编码。还提供了PyTorch实现,用户可使用不同模块进行数据处理、模型微调和测试。

bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
t5-base-finetuned-emotion - 基于T5模型的情感识别技术
GithubHuggingfaceT5下游任务传输学习开源项目情感数据集情感识别模型
这个项目展示了T5模型在情感识别中的应用,通过一个高质量的情感数据集进行分类。经过精细调优,T5模型能够识别六种情感:悲伤、快乐、爱、愤怒、恐惧和惊讶,精确度和召回率都非常优秀。该模型可用于情感分析任务,准确率高达93%,展现了自然语言处理领域的先进技术。
BERT-Emotions-Classifier - 情感多标签分类的高效工具
BERTGithubHuggingface多标签分类开源项目情感分析情感分类数据集模型
BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
GithubHuggingfacePyTorch Lightningbert-base-uncased-emotion开源项目情感分析情感类别数据集模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。
emotion-english-distilroberta-base - DistilRoBERTa英文文本情感分析模型
DistilRoBERTaGithubHugging FaceHuggingface开源项目情感分类机器学习模型自然语言处理
该模型基于DistilRoBERTa-base微调,用于英文文本情感分析。可预测7种情绪:愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶。训练数据来自Twitter、Reddit等6个多样化数据集。提供简单的3行代码使用方法,适用于单个文本和完整数据集分析。模型在平衡数据集上的评估准确率为66%,远高于随机基准。
bertweet-base-emotion-analysis - BerTweet英文情感分析模型集成EmoEvent语料库
BERTweetGithubHuggingface开源项目情感分析数据集机器学习模型自然语言处理
bertweet-base-emotion-analysis是一个基于BerTweet架构的英文情感分析开源模型,通过EmoEvent语料库训练而成。作为pysentimiento库的组成部分,该模型支持英文文本的情感识别与分析,主要应用于学术研究领域。该模型结合预训练语言模型技术,为自然语言处理研究提供了实用的情感分析工具。
conv-emotion - 会话情感识别技术及最新数据集与模型更新
COSMICDialogueGCNGithubRECCONTL-ERCemotion recognition开源项目
本页面介绍了会话情感识别技术,包括用于识别会话情感的多种基于PyTorch和TensorFlow的模型,如COSMIC、TL-ERC和DialogueGCN。还提供了最新的多模态多方对话数据集和相关基准数据集,并介绍了识别会话情感原因和对话生成的技术。这些技术通过建模对方状态和跨人际依赖关系来实现情感识别。最新更新包括M2H2数据集和相关基线模型,并链接至其他重要项目和研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号