Project Icon

DeepMoji

情感分析模型,基于12亿推文训练,支持迁移学习与多情感预测

DeepMoji是一个情感分析模型,基于12亿推文数据训练,可通过迁移学习在多种情感任务中表现出色。项目包含代码示例和预训练模型,兼容Python 2.7和Keras框架,适用于情感预测和文本编码。还提供了PyTorch实现,用户可使用不同模块进行数据处理、模型微调和测试。

distilbert-base-uncased-emotion - DistilBERT情感分析模型:小巧快速且准确
DistilBERTGithubHugging FaceHuggingface开源项目情感分析文本分类模型自然语言处理
这是一个基于DistilBERT的情感分析模型,体积比BERT小40%,速度更快,同时保持93.8%的准确率。模型可将文本分类为6种情感,每秒处理398.69个样本,性能优于BERT、RoBERTa和ALBERT同类模型。该模型采用情感数据集微调,通过简单pipeline即可快速部署使用。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
sentiment_analysis_generic_dataset - BERT微调模型实现精准文本情感分析
BERTGithubHuggingface开源项目情感分析文本分类模型自然语言处理预训练模型
该项目基于BERT预训练模型,专门针对情感分析任务进行微调。模型使用bert-base-uncased作为基础,通过掩码语言建模和下一句预测技术进行预训练,具备理解双向语境的能力。这种预训练方法使模型能为情感分析等下游任务提供有效特征。值得注意的是,此微调版本仅适用于情感分析,不推荐用于其他任务的进一步调整。
EMO - 音频驱动的富表情肖像视频生成模型
EMOGithub人像视频生成开源项目扩散模型表情合成音频到视频转换
EMO是一种音频到视频的扩散模型,可在弱条件下生成表现力丰富的肖像视频。该项目由阿里巴巴智能计算研究院开发,将音频输入转化为面部表情和头部动作,增强数字人物的自然度和情感表达。EMO技术在虚拟主播和数字人互动等领域具有应用潜力,可提供更真实的视觉体验。
twitter-roberta-base-sentiment-latest - RoBERTa基础的推特情感分析模型 支持英文社交媒体文本
GithubHuggingfaceRoBERTaTweetEvalTwitter开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的推特情感分析模型,通过1.24亿条推文训练并针对情感分析任务微调。模型可将英文推文分类为积极、中性或消极,支持Transformers库集成。适用于社交媒体分析和舆情监测等场景,是TweetNLP项目的组成部分,体现了社交媒体自然语言处理的最新进展。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
twitter-xlm-roberta-base - XLM-T 基于推特的多语言模型用于情感分析和跨语言任务
GithubHuggingfaceXLM-Roberta-base多语言开源项目情感分析推特模型自然语言处理
XLM-T是一个基于XLM-RoBERTa架构的多语言模型,通过1.98亿条多语言推文训练而成。该模型专门用于Twitter数据分析,支持30多种语言的情感分析和跨语言相似度计算。XLM-T还提供了一个覆盖8种语言的统一Twitter情感分析数据集,可作为多语言自然语言处理任务的基准模型,并支持针对特定应用场景的进一步微调。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
bert-base-arabic-finetuned-emotion - bert-base-arabic 模型在情感识别中的应用与优化
GithubHuggingfaceTransformersbert-base-arabic-finetuned-emotion开源项目情感检测文本分类模型阿拉伯文本
本项目展示了一种基于bert-base-arabic的微调情感检测模型,在emotone_ar数据集上实现了74%的准确率和F1分数。该模型通过Transformer技术增强了情感分析能力,适用于阿拉伯语文本处理。用户可以在Hugging Face平台找到此预训练模型,并应用于其自然语言处理任务。
TweetEmote - 智能Twitter助手 让推文更具表现力
AI工具AI生成内容TweetEmoteTwitter优化情感表达社交媒体工具
TweetEmote是一款智能Twitter助手,为用户提供多样化的情感和风格选择,用于创作富有表现力的推文、回复和文章线程。这款工具不仅能提升Twitter互动,还可用于生成博客标题和个人信息。目前已有超过1000名社交媒体影响者使用TweetEmote,帮助他们节省时间,创作出更吸引人的内容。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号