Project Icon

diffusion-forcing

创新机器学习方法结合下一步预测和全序列扩散技术

Diffusion Forcing是一种结合下一步预测和全序列扩散技术的机器学习方法。该项目为视频预测、迷宫规划和时间序列分析等任务提供了框架。通过时间注意力机制,Diffusion Forcing可生成长序列预测并在复杂环境中进行规划。该方法在Minecraft和DMLab视频数据集以及迷宫规划任务中表现优异。项目包含使用说明和预训练模型,便于研究者快速上手和复现结果。

awesome-diffusion-model-in-rl - 扩散模型在强化学习领域的最新研究进展汇总
Diffusion ModelGithub开源项目强化学习机器人操作离线强化学习轨迹优化
本项目汇总了强化学习领域应用扩散模型的最新研究论文,涵盖离线RL、机器人控制、轨迹规划等多个方向。持续追踪并整理扩散强化学习的前沿进展,为研究人员提供全面的参考资源。每篇论文均附有概述、代码链接和实验环境等详细信息,方便读者深入了解。
Awesome-Diffusion-Models - 扩散模型资源与研究的全面综述
Diffusion ModelsGithub图像生成开源项目数据生成机器学习自然语言处理
提供全面的扩散模型资源与研究论文,包括入门帖子、视频、讲座和教程笔记本。涵盖图像生成、分类、分割、音频处理和自然语言处理等应用领域,适用于机器学习和深度学习研究者。访问本页,获取更多详细信息与最新进展,提升对扩散模型的理解与应用。
Smooth-Diffusion - 提升扩散模型潜在空间平滑性的新方法
CVPR 2024GithubSmooth Diffusion图像生成开源项目扩散模型潜在空间
Smooth Diffusion是一种创新的扩散模型技术,通过优化潜在空间的平滑性来提升模型性能。这种方法在图像插值、反演和编辑任务中展现出显著优势,实现了更连续的过渡效果、更低的反演误差,以及更好的未修改内容保留。通过在训练过程中引入变化约束,Smooth Diffusion为扩散模型研究开辟了新方向。
diffusion-models-class - 掌握扩散模型从理论到实践的全面课程
AI绘图GithubHugging FacePyTorch开源项目扩散模型深度学习
Hugging Face推出的扩散模型免费课程涵盖理论研究和实践应用。课程内容包括使用Diffusers库生成图像和音频、训练和微调扩散模型、探索条件生成和引导技术、创建自定义模型管道等。适合具备Python和深度学习基础的学习者,提供全面的扩散模型学习体验。
k-diffusion - 扩散模型框架支持多种采样算法和模型架构
GithubPyTorchk-diffusiontransformer开源项目注意力机制生成模型
k-diffusion是一个基于PyTorch的扩散模型实现框架。它支持分层Transformer模型、多种采样算法和Min-SNR损失加权。该框架提供模型包装器、CLIP引导采样功能,以及对数似然、FID和KID等评估指标的计算。k-diffusion为扩散模型研究和应用提供了实用工具。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
MultiDiffusion - 基于预训练模型的多功能可控的图像生成框架
GithubMultiDiffusion可控生成图像生成开源项目扩散模型文本到图像
MultiDiffusion 是一个统一框架,通过预训练的文字转图像扩散模型,实现多功能且可控的图像生成,无需进一步训练或微调。该框架支持用户使用各种控制信号,如纵横比和空间引导信号,生成高质量、多样化的图像。MultiDiffusion 优化了多重扩散生成过程,使用一组共享参数或约束,支持局部和全局编辑,适用于如烟雾、火焰和雪等半透明效果。
diffusion-explainer - 将扩散模型的图像生成过程可视化的交互式工具
Diffusion-ExplainerGithub人机交互可视化工具开源项目机器学习
Diffusion-Explainer是一个交互式可视化工具,用于展示扩散模型的图像生成过程。该工具通过直观的界面呈现生成过程中的每个步骤,使用户能够深入了解模型的内部机制。由乔治亚理工学院和IBM研究院开发的这个开源项目,为AI研究人员和开发者提供了一个分析扩散模型的平台,并提供在线演示功能。
denoising-diffusion-pytorch - 生成模型新方法:Pytorch中的Denoising Diffusion
Denoising Diffusion Probabilistic ModelGithubLangevin采样Pytorch开源项目扩散模型生成建模
Denoising Diffusion Probabilistic Model在Pytorch中的实现,通过去噪得分匹配估计数据分布梯度,并使用Langevin采样生成样本。这种方法可能成为GANs的有力竞争者。项目支持多GPU训练,提供详细的安装和使用指南,是研究人员和开发者的高效工具,支持1D序列数据和图像数据的生成和训练。
DiffusionFromScratch - 实践教程:从零构建和训练稳定扩散模型
GithubStable DiffusionUNet图像生成开源项目教程机器学习
DiffusionFromScratch是一个开源项目,提供精简代码库用于重建稳定扩散模型。项目特点包括单Python脚本实现、支持MNIST和CelebA数据集训练,以及提供多个Colab笔记本。这些笔记本涵盖模型架构探索、UNet模型构建和基于文本生成MNIST图像等内容。项目还展示了演示输出和音乐视频生成示例,为学习稳定扩散模型提供了实用资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号