Project Icon

BCI

Pyramid Pix2pix乳腺癌免疫组织化学图像生成框架

BCI项目开发了Pyramid Pix2pix框架,实现HE到IHC乳腺癌图像的高质量转换。项目提供开源代码、数据集和预训练模型,支持1024x1024分辨率图像生成。研究人员可利用BCI资源开展乳腺癌图像分析和生成研究。

breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
HistoSSLscaling - 病理组织图像自监督学习新方法
GithubPhikonViT开源项目掩码图像建模组织病理学自监督学习
HistoSSLscaling项目开发了基于掩码图像建模的自监督学习方法,用于病理组织图像分析。该项目的Phikon模型在4000万张全癌种病理切片上预训练,在多项下游任务中表现出色。项目提供了预训练模型、代码和数据集特征,为计算病理学研究提供支持。
DeepLIIF - 深度学习框架实现免疫组织化学图像的多重荧光转换与定量分析
DeepLIIFGithub免疫组化多重免疫荧光开源项目深度学习细胞分割
DeepLIIF是一个开源深度学习框架,用于免疫组织化学(IHC)图像的多重荧光转换和定量分析。它在单步骤中实现染色分离、细胞分割和IHC评分。通过利用IHC和多重免疫荧光配准数据集,DeepLIIF可将IHC图像转换为多重免疫荧光图像,同时提供细胞分割和分类。该项目已部署为云原生平台,支持多种输入格式,并集成MLOps流程,为病理学研究和临床应用提供支持。
prov-gigapath - 数字病理学全切片基础模型
GithubProv-GigaPath医学图像分析开源项目数字病理学深度学习预训练模型
Prov-GigaPath是一个基于真实世界数据开发的数字病理学全切片基础模型。它包含切片编码器和幻灯片编码器,支持切片级和幻灯片级任务。该模型已在Nature发表,并开源了预训练模型、代码和演示笔记本。研究人员可利用它探索数字病理学幻灯片数据的预训练和编码。该项目仅供研究使用,不适用于临床诊断。
Guided-pix2pix - 引导式图像转换,双向特征变换的创新应用
Github双向特征转换图像翻译开源项目深度学习神经网络计算机视觉
Guided-pix2pix项目推出创新的图像转换方法,运用双向特征变换技术提高引导式图像生成的精确度。该方法在姿势迁移、纹理迁移和深度上采样领域展现出优异性能,生成的图像质量更高、更贴合引导信息。项目开放完整代码和预训练模型,为研究人员提供便利的实验和开发环境。
DeepImage-an-Image-to-Image-technology - 强大而多样化的图像生成与转换技术集合
CycleGANDeepImageGANGithubImage-to-ImageStyleGAN开源项目
DeepImage是一个综合性的图像生成与转换技术项目,包含多种先进算法如pix2pixHD、pix2pix和CycleGAN等。该项目提供了图像生成演示、理论研究资料和实践指南,涵盖从基础到前沿的生成对抗网络(GAN)技术。DeepImage为研究人员和开发者提供了一个全面的学习和实验平台,助力探索图像生成与转换的多种可能性。
SyntheticTumors - 合成肿瘤数据助力AI提升真实肿瘤分割效果
AIGithub医学影像合成肿瘤开源项目深度学习肿瘤分割
SyntheticTumors项目开发了创新策略生成合成肝脏肿瘤数据,用于训练AI模型。研究发现,使用合成肿瘤数据训练的模型在真实肿瘤分割任务中表现优于使用真实肿瘤数据训练的模型。项目提供了多个合成肿瘤示例,展示了其与真实肿瘤的视觉相似性。这种方法为医学影像分析和AI辅助诊断提供了新的研究方向。
pix2pixHD - 高分辨率图像到图像转换及语义编辑
GANsGithubpix2pixHD图像翻译开源项目语义操控高分辨率
此Pytorch实现的高分辨率图像到图像转换方法(如2048x1024),可以将语义标签图转化为真实感图像,或从面部标签图生成肖像。该项目适用于街景和肖像等图像生成及交互编辑。需要NVIDIA GPU,提供详细的安装、测试和训练指南,支持多GPU和自动混合精度训练。
UNI - 革新计算病理学的通用自监督模型
GithubUNI全幻灯片图像开源项目病理AI自监督学习计算病理学
UNI是一款为计算病理学开发的通用自监督模型。它利用超过10万张H&E染色全扫描图像进行预训练,在34项代表性任务中表现卓越。UNI具备分辨率无关的组织分类、少样本玻片分类和多种癌症类型分类等能力,为病理学AI模型开发开辟新途径。
pix2pix - 利用条件对抗网络的图像到图像翻译实现
Conditional Adversarial NetworksCycleGANGithubImage-to-Image TranslationPyTorchpix2pix开源项目
使用条件对抗网络实现图像到图像翻译,支持从建筑立面生成到日夜转换等多种任务。该项目能在小数据集上快速产生良好结果,并提供改进版的PyTorch实现。支持多种数据集和模型,并附有详细的安装、训练和测试指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号