Project Icon

prophet

开源时间序列预测库Prophet

Prophet是Facebook开发的开源时间序列预测库。基于加法模型,它能处理非线性趋势、多重季节性和节假日效应。适用于具有强季节性且拥有较长历史数据的时间序列,对缺失数据和趋势变化有较强适应性。Prophet支持Python和R语言,API简洁易用,可快速生成高质量预测。

prophet-ruby - Ruby的Prophet时间序列预测库
GithubProphetRuby开源项目数据分析时间序列预测机器学习
Prophet.rb是Ruby版的时间序列预测库,源自Facebook的Prophet项目。它支持多重季节性、线性和非线性增长、节假日效应,可处理缺失数据。提供简单和高级API,功能包括异常检测、饱和预测、趋势变点分析和模型诊断。Prophet.rb简化了预测、可视化和模型优化流程,适用于各种数据分析和预测任务。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
streamlit_prophet - 交互式时间序列预测工具助力数据分析
GithubProphetStreamlit可视化开源项目时间序列预测模型训练
streamlit_prophet是一款开源的时间序列预测工具,集成了Streamlit的交互功能和Prophet的预测算法。它提供了简洁的用户界面,支持数据上传、预处理、模型调参、评估和预测等功能。兼容Python 3.7-3.9版本,streamlit_prophet通过可视化界面简化了时间序列预测过程。这个工具适用于数据分析师和业务人员,可快速部署并用于各类预测分析任务。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
Auto_TS - 自动构建和选择多种时间序列模型的高效工具
Auto_TSGithubProphet开源项目时间序列模型自动化机器学习预测
Auto_TS是一个时间序列自动建模工具,支持ARIMA、SARIMAX、VAR、分解模型和机器学习模型等多种技术。它能自动构建和选择最佳模型,适用于不同频率的数据,并提供灵活的参数设置。Auto_TS支持交叉验证和预测功能,简化了建模过程,提高了效率。该工具适合数据分析人员使用,可通过简单的代码实现复杂的时间序列建模任务。
forecast - R语言时间序列预测分析工具
ARIMA模型GithubR包forecast开源项目指数平滑时间序列预测
forecast是一个R语言包,用于单变量时间序列预测分析。它支持ETS、ARIMA、ARFIMA、STL和TBATS等多种预测模型,包括基于状态空间模型的指数平滑和自动ARIMA建模。该包提供可视化工具,便于展示和分析预测结果。forecast适用于不同水平的数据分析人员,提供多样化的时间序列预测工具。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号