Project Icon

pytorch3d

基于PyTorch的高效3D计算机视觉研究库

PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。

torch-points3d - 用于在点云上进行深度学习的 Pytorch 框架
CUDAGithubPyTorchtorch-points3d开源项目深度学习点云分析
一个用于点云分析的深度学习框架,基于Pytorch Geometric和Facebook Hydra。该框架支持构建复杂模型并提供高层次API,支持PointNet、PointNet++、RSConv等常见模型,便捷实现分类、分割和检测任务。推荐使用Docker安装以确保兼容性。了解更多信息,请查阅文档和示例笔记本。
Open3D - 支持快速开发的3D数据处理开源库
3D数据处理C++ APIGPU加速GithubOpen3DPython API开源项目
支持快速开发3D数据处理应用的开源库,提供C++和Python接口。核心功能包括3D数据结构、3D数据处理算法、场景重建、表面对齐、3D可视化、基于物理的渲染(PBR)、3D机器学习支持(与PyTorch和TensorFlow兼容)、核心3D操作的GPU加速。适用于Ubuntu、macOS和Windows平台,支持源码编译和pip安装。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
vision3d - PyTorch驱动的开源激光雷达感知库
3D检测GithubLIDAR感知PV-RCNNPyTorchSECOND模型开源项目
Vision 3D是一个基于PyTorch的开源库,专注于激光雷达感知领域。该项目以代码简洁性为核心,便于扩展新模型和数据集。目前已实现SECOND算法,并部分完成PV-RCNN。虽然开发已暂停,但项目仍提供详细文档和示例,支持研究人员和开发者在3D目标检测领域的应用。Vision 3D作为开源工具,欢迎社区贡献,为激光雷达感知研究提供了有价值的资源。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
mmdetection3d - 支持多模态单模态的开源3D目标检测框架
3D目标检测GithubMMDetection3D开源工具箱开源项目点云处理计算机视觉
MMDetection3D是OpenMMLab项目开发的开源3D目标检测框架,基于PyTorch构建。它支持多模态和单模态检测器,适用于室内外3D检测数据集,可与2D检测无缝集成。该框架提供300多种预训练模型、40多种算法实现,以及MMDetection全部功能模块。MMDetection3D不仅可用于研究,还可作为库支持各类3D检测应用开发。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
pytorch-3dunet - 支持语义分割和回归问题的3D U-Net模型实现
3D U-NetGithubpytorch-3dunet安装开源项目训练预测
pytorch-3dunet实现了多种3D U-Net模型及其变体,包括标准3D U-Net、残差3D U-Net和带压缩激励块的残差3D U-Net。该项目支持二元和多分类语义分割以及去噪、学习反卷积等回归问题。项目还支持2D U-Net,提供多种配置示例帮助用户训练和预测。此外,该项目可在Windows和OS X系统上运行,并支持多种损失函数和评估指标,如Dice系数、平均交并比、均方误差等。这一描述更加简洁、流畅,同时保持了准确性。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号