Project Icon

ddpm-ema-celebahq-256

无条件图像生成的高效去噪扩散模型

项目通过去噪扩散概率模型实现高质量无条件图像生成,结合无平衡态热力学概念,在CIFAR10和256x256 LSUN数据集上取得了优异的Inception和FID评分。用户可以灵活选择噪声调度器以平衡生成质量与速度,该模型也支持渐进式无损压缩,作为自动回归解码的推广。详情请参照官方推理与训练示例。

Phased-Consistency-Model - 高效文本条件图像生成的新方法
GithubPCM一致性模型图像生成开源项目文本条件深度学习
Phased Consistency Model (PCM)是一种新型图像生成技术,可在少量步骤内生成高质量的文本条件图像。该模型解决了先前一致性模型在文本条件生成中的局限,如灵活性不足、结果不一致以及低步骤效果差等。PCM采用分阶段处理ODE轨迹的方法,提高了训练效率并改善了生成效果。在不同步骤数设置下,PCM均展现出优异性能,为快速图像生成领域提供了新的解决方案。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN CompressionGithub图像生成开源项目性能优化条件生成对抗网络模型压缩
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
cycle-diffusion - 零样本图像翻译与无配对图片转换的扩散模型方法
CycleDiffusionGithubHuggingFacePyTorch开源项目扩散模型零样本图像编辑
该项目展示了如何正规化扩散模型中的随机种子,并实现零样本图像到图像翻译和指导。CycleDiffusion方法无需配对图像,利用稳定扩散等模型实现图像翻译。项目还提供详细的安装和使用指南,包括依赖项、预训练模型和评估数据等内容,通过这些工具可提高生成图像的质量和一致性。
DiffIR - 创新扩散模型提升图像修复效率
DiffIRGithubICCV2023图像恢复开源项目扩散模型深度学习
DiffIR是一种专为图像修复设计的创新扩散模型。它结合了紧凑的图像修复先验提取网络、动态图像修复变换器和去噪网络,相比传统扩散模型实现了更快速、稳定的图像恢复。在多项图像修复任务中,DiffIR展现出最先进的性能,同时大幅降低计算成本,为图像修复技术开辟了新的发展方向。
LFM - 潜空间流匹配实现高效图像生成
Flow MatchingGithubPyTorch图像生成开源项目潜在空间生成模型
LFM项目创新性地将流匹配应用于预训练自编码器的潜空间,显著提升高分辨率图像生成的效率。这种方法不仅在计算资源有限的情况下保持了图像质量,还首次将条件生成任务融入流匹配框架。经过广泛测试,LFM在多个数据集上均取得了优异的定量和定性结果。
stable-diffusion-pytorch - Stable Diffusion PyTorch实现,支持自定义参数
该项目提供简洁且易于修改的Stable Diffusion PyTorch实现,支持文本生成图像与图像生成图像的操作,允许自定义生成参数、调整指导规模和选择生成步数等多种功能。依赖PyTorch、Numpy和Pillow等库,适合需要高度控制与灵活性的深度学习项目。通过Colab可以快速开始使用,并且借鉴了多个知名开源库,是学习和实践的理想资源。
ReNoise-Inversion - 迭代重噪图像反演方法提升重建精度和编辑效果
AI图像处理GithubReNoise图像反演开源项目扩散模型迭代噪声
ReNoise-Inversion项目开发了一种创新的图像反演方法,利用迭代重噪机制提高重建精度,同时保持低操作成本。该方法适用于多种采样算法和模型,包括最新的加速扩散模型。实验表明,ReNoise技术在精确度和速度方面表现优异,同时保持了图像的可编辑性。这一技术为基于文本的真实图像编辑开辟了新途径。
Diffusion-Low-Light - 小波扩散模型提升低光照图像质量
GithubSiggraph Asia 2023低光照图像增强小波扩散模型开源项目深度学习计算机视觉
Diffusion-Low-Light是一个发表于Siggraph Asia 2023的开源项目,提出了基于小波扩散模型的低光照图像增强方法。该方法在LOLv1、LOLv2和LSRW等多个数据集上表现优异,与现有技术相比效果显著。项目提供预训练模型、代码和详细实施指南,在保持图像细节和自然度方面表现出色,为低光照图像处理领域带来了创新解决方案。
kencanmix_v1.5 - 稳定扩散与文本到图像生成的优化方案
AI绘图GithubGoogle colabHuggingfacediffusersstable-diffusion开源项目文本到图像模型
kencanmix_v1.5通过整合稳定扩散和谷歌Colab,提供了卓越的文本到图像转换能力,示例图片体现了创新的推理技术,为图像生成探索开辟了新的方向。
Collaborative-Diffusion - 多模态控制的面部生成与编辑,协作扩散模型
CVPR 2023Collaborative DiffusionGithubMMLab@NTU多模态脸部生成开源项目脸部编辑
Collaborative Diffusion项目展示了如何通过多模态控制生成和编辑面部图像,保证生成结果与输入条件一致。该项目使用动态扩散器在每一步选择性处理不同模态,确保身份信息的准确性。最新更新包括对FreeU的支持、单模态面部生成推理脚本,以及适用于不同分辨率的模型训练和推理代码,满足多样化应用需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号