Project Icon

ICCV2023-MCNET

基于隐式身份表示的说话头视频生成方法

MCNet是一种新型说话头视频生成方法,在ICCV 2023上发表。该方法利用隐式身份表示和记忆补偿网络,生成高质量、自然的说话头视频。MCNet能够保持身份一致性,同时生成逼真、富有表现力的面部动画。项目开源了代码实现和预训练模型,为研究者提供了探索和应用的基础。

Collaborative-Diffusion - 多模态控制的面部生成与编辑,协作扩散模型
CVPR 2023Collaborative DiffusionGithubMMLab@NTU多模态脸部生成开源项目脸部编辑
Collaborative Diffusion项目展示了如何通过多模态控制生成和编辑面部图像,保证生成结果与输入条件一致。该项目使用动态扩散器在每一步选择性处理不同模态,确保身份信息的准确性。最新更新包括对FreeU的支持、单模态面部生成推理脚本,以及适用于不同分辨率的模型训练和推理代码,满足多样化应用需求。
Make-It-3D - 单图生成高逼真3D模型
3D重建GithubICCV 2023Make-It-3D单张图像开源项目高保真
Make-It-3D项目利用训练良好的2D扩散模型,从单个图像生成高质量3D内容。方法采用两阶段优化流程,先优化神经辐射场整合正视图和新视角的扩散先验,后将粗略模型转化为纹理点云并提升现实感。实验显示,该方法在视觉质量和重建准确性上大幅领先,并支持文本到3D创建和纹理编辑等应用。
facenet - 基于TensorFlow的高精度面部识别开源项目
FaceNetGithubInception ResNet v1TensorFlow人脸识别开源项目预训练模型
FaceNet,一个基于TensorFlow的开源面部识别项目,采用最新的深度学习技术和数据集(如CASIA-WebFace和VGGFace2)开发。其准确率可达99.65%,并使用MTCNN进行高效的面部对齐。适合需求高级面部识别技术的开发者和科研人员。
MVHumanNet - 多视角日常穿着人体捕捉大规模数据集
GithubMVHumanNet人体捕捉多视角开源项目数据集计算机视觉
MVHumanNet是一个大规模多视角人体捕捉数据集,包含4,500个人物身份、9,000套日常服装和60,000个动作序列。数据集提供645百万帧图像,附带丰富标注,如人体遮罩、相机参数、2D/3D关键点、SMPL/SMPLX参数及相应文本描述。这一资源为计算机视觉和人体建模研究提供了重要支持,适用于多种应用场景。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
T2M-GPT - 基于Pytorch的从文本描述到人类动作生成的AI技术
GithubT2M-GPT三维模型人体运动生成开源项目深度学习视觉结果
T2M-GPT, 领先的AI技术, 通过解析文本生成精准的人类动作,已在2023年IEEE/CVF会议展示认可。包含易用的安装、快速指南及训练评估资料,支持多种3D动作数据集。
MotionCtrl - 视频生成中的动作控制统一解决方案
AIGithubMotionCtrl动作控制开源项目腾讯视频生成
MotionCtrl是一个统一的视频生成动作控制系统,可独立调节生成视频中的相机和物体运动。该项目兼容SVD、VideoCrafter和AnimateDiff等多个视频生成模型,并提供训练代码、推理脚本和在线演示。通过MotionCtrl,研究人员和内容创作者能够更精确地控制生成视频的动作效果,从而提高视频生成的质量和灵活性。
Awesome-Avatars - 人类头像技术最新进展资源列表
3D建模Github人体头像开源项目深度学习神经渲染计算机视觉
该项目汇总了人类头像技术领域的最新进展,包括生成、重建、编辑等方面的重要论文和开源代码。涵盖头像生成、单人重建、视图合成、网格重建、文本生成头像、头像交互、动作生成等子领域。每项成果均提供论文链接、代码仓库和项目主页,便于研究人员快速了解和应用这些前沿技术。
VideoBooth - 基于图像提示的AI视频生成新突破
GithubVideoBooth人工智能图像提示开源项目扩散模型视频生成
VideoBooth是一个AI视频生成项目,利用扩散模型技术基于图像提示创建视频。该项目将静态图像主体转化为动态视频,实现图像到视频的转换。VideoBooth采用两阶段训练方法,提供安装、推理和训练指南。项目还公开了专门数据集,为研究提供资源。
IJCAI2023-CoNR - 基于神经渲染的动漫角色动画生成技术
AI绘图CoNRGithub动画角色表开源项目深度学习神经渲染
IJCAI2023-CoNR项目开发了一种协作式神经渲染技术,可将手绘动漫角色设定图转换为舞蹈视频。该技术结合超密集姿态序列和角色设定图,实现高质量动画生成。这项研究为动漫创作提供了新工具,可能显著改变传统动漫制作流程。项目已开源代码和数据集,并提供在线演示和教程,便于研究者和开发者探索应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号