Project Icon

MeViS

基于运动表达的大规模视频目标分割数据集

MeViS是一个专注于运动表达引导目标分割的大规模视频数据集。它包含2,006个视频和28,570个描述性句子,为开发利用运动表达进行复杂视频场景分割的算法提供了平台。该数据集突出了运动在语言引导视频目标分割中的重要性,为相关研究提供了新的基准。

MiVOS - 交互式视频对象分割方法与差异感知融合
DAVISGithubMiVOSPyTorch交互式分割开源项目视频对象分割
该项目介绍了一种模块化的交互视频对象分割方法,通过交互生成对象掩码并采用差异感知的融合模块进行处理。该方法在DAVIS和YouTube等基准测试中表现出色,并支持用户交互的GUI工具,简化了视频对象标注过程。项目还集成了多个预训练模型,并提供了快速下载和数据生成脚本,为研究人员和开发者提供了便捷高效的解决方案。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
MiraData - 长时视频数据集助力AI视频生成研究
GithubMiraData开源项目结构化标注视频数据集视频生成长视频
MiraData是一个为长视频生成任务设计的大规模数据集。其特点包括平均72秒的视频长度和详细的结构化字幕。数据集提供330K、93K、42K和9K四个版本,每个视频配有六类字幕:主要对象、背景、风格、相机运动、简短摘要和详细描述。这些特性使MiraData成为改进长序列视频处理和镜头转换建模的重要资源。
MAD - 大规模电影音频数据集用于视频语言定位研究
CVPRGithubMAD数据集开源项目电影音频描述视频语言定位计算机视觉
MAD是一个用于视频语言定位研究的大规模数据集,源自电影音频描述。它包含384K个句子,涵盖650部电影的1.2K小时视频内容。数据集横跨22个电影类型和90年电影史,提供多样化的动作、场景和语言素材。MAD的独特之处在于其长形式定位设置,具有庞大的语言词汇量,对准确性和效率提出了挑战。这一资源为研究人员开拓了视频语言理解的新领域。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
L-SVD - 推动人工智能情感分析研究的大规模视频数据集
GithubL-SVD开源项目情感识别机器学习深度学习视频数据集
L-SVD数据集包含20,000多个短视频片段,涵盖8种人类情绪,为情感识别研究提供重要资源。该数据集特点包括精确的情感标注、统一的视频质量和全球社区参与。L-SVD致力于推动认知科学、心理学、计算机科学和医学等领域的研究,为情感AI、机器学习和深度学习的发展奠定基础。
MVHumanNet - 多视角日常穿着人体捕捉大规模数据集
GithubMVHumanNet人体捕捉多视角开源项目数据集计算机视觉
MVHumanNet是一个大规模多视角人体捕捉数据集,包含4,500个人物身份、9,000套日常服装和60,000个动作序列。数据集提供645百万帧图像,附带丰富标注,如人体遮罩、相机参数、2D/3D关键点、SMPL/SMPLX参数及相应文本描述。这一资源为计算机视觉和人体建模研究提供了重要支持,适用于多种应用场景。
XMem - 长时视频对象分割的解决方案,基于人类多尺度记忆模型
Atkinson-Shiffrin记忆模型ECCVGPU内存优化GithubXMem开源项目视频对象分割
XMem项目采用Atkinson-Shiffrin记忆模型,提供了一种全新的视频对象分割(VOS)方法。通过结合不同时间尺度的记忆单元,有效避免在处理长时视频时出现的计算和GPU内存问题。XMem可处理超过10000帧的视频,在有限GPU资源下仍保持高效,处理速度达每秒20帧,并附带简化版GUI。项目中还提供了详细的训练和推理指南,适用于实验和实际应用。
InternVideo - 视频基础模型助力多模态理解进展
GithubInternVideo多模态理解开源项目模型更新视频基础模型视频文本数据集
InternVideo项目致力于开发通用视频基础模型,提升多模态视频理解能力。项目包含InternVideo和InternVideo2两个主要版本,以及大规模视频-文本数据集InternVid。InternVideo2采用生成式和判别式学习方法,在多模态视频理解任务中表现突出。项目不断更新,提供多种规模的模型和丰富的视频注释数据,为研究和开发提供有力支持。
video2dataset - 快速构建大规模视频数据集的开源工具
Githubvideo2dataset分布式处理开源项目数据预处理视频下载视频数据集
video2dataset是一个开源工具,用于从视频URL快速创建大规模视频数据集。它支持多种输入输出格式和文件系统,可在12小时内处理1000万个视频。该工具提供增量模式、分布式处理和Weights & Biases集成,适合机器学习训练等场景。其灵活的API和配置选项让用户能够精细控制数据处理流程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号