Project Icon

yolov10x

高效的实时端到端物体检测工具

YOLOv10是一个高效的端到端物体检测开源项目,支持在COCO等数据集上进行准确的训练和验证。通过整合PyTorch模型资源,用户可简便地安装和应用。本项目支持从预训练模型进行迁移学习,适合多种计算机视觉应用需求,是追求速度与精度的理想选择。

YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
yolov8-streamlit-detection-tracking - YOLOv8和Streamlit打造的实时目标检测追踪应用
GithubStreamlitYOLOv8实时目标检测对象追踪开源项目计算机视觉
该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
YOLOv8-TensorRT-CPP - 用C++和TensorRT实现高效的YOLOv8模型推理
CPPGithubTensorRTYOLOv8开源项目深度学习目标检测
本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
PaddleDetection - 目标检测套件支持多任务开发部署
GithubPaddleDetectionPaddlePaddle开源项目深度学习目标检测计算机视觉
PaddleDetection是基于PaddlePaddle的目标检测开发套件,支持通用、小目标、旋转框等多种检测任务。它提供PP-YOLOE、PP-PicoDet等高性能模型和丰富的模型组件,注重产业应用,帮助开发者实现从数据准备到模型部署的全流程开发。
YOLOMagic - 增强YOLOv5视觉任务框架功能与用户体验
GithubYOLOv5图像推理开源项目注意力机制网络模块视觉任务
YOLO Magic🚀 是一个基于YOLOv5的扩展项目,为视觉任务提供更强大的功能和简化的操作。该项目引入了多种网络模块,如空间金字塔模块、特征融合结构和新型骨干网络,并支持多种注意力机制。通过直观的网页界面,无需复杂的命令行操作即可轻松进行图像和视频推理。无论是初学者还是专业人员,YOLO Magic🚀都能提供出色的性能、强大的定制能力和广泛的社区支持。
yolov8m-building-segmentation - 卫星图像中YOLOv8建筑物分割的精准实现
GithubHuggingfaceYOLOv8ultralyticsplus卫星建筑分割图像分割开源项目模型
该模型专注于通过Yolov8m实现卫星图像中建筑物的精准分割,借助PyTorch以提高分析准确性,mAP@0.5的精度分别为0.62261和0.61275。使用ultralyticsplus库及Python示例可实现快速图像加载与预测,适合高精度建筑物分割的应用需求。
multispectral-object-detection - 多光谱图像融合的高效目标检测方法
GithubTransformerYOLOv5多光谱目标检测开源项目计算机视觉跨模态融合
该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号