Project Icon

betty

简化广义元学习和多层优化的自动微分库

Betty是一个基于PyTorch的自动微分库,专注于简化广义元学习和多层优化的实现。它通过Problem类和Engine类提供模块化接口,支持元学习、超参数优化等大规模应用。Betty集成了多种梯度近似方法和分布式训练功能,为复杂GML/MLO程序的开发提供了灵活高效的解决方案。

lightning-bolts - PyTorch Lightning的深度学习组件扩展
BoltsDeepSparseGithubPyTorch LightningSparseMLTorch ORT开源项目
Lightning Bolts为PyTorch Lightning提供了多种扩展组件,包括回调和数据集,旨在加速训练和推理。它支持通过Torch ORT将模型转换为优化的ONNX图,以实现GPU加速训练;并通过SparseML在微调中引入稀疏性,提高推理性能。项目支持广泛的问题解决,并欢迎用户贡献通用组件。了解更多安装和使用信息,请访问官方文档和社区支持平台。
torchdiffeq - 可微分常微分方程求解器库 PyTorch实现
GithubODE求解器PyTorch反向传播开源项目微分方程深度学习
torchdiffeq是基于PyTorch的常微分方程(ODE)求解器库,支持通过伴随方法进行ODE解的反向传播,保持恒定内存开销。该库兼容GPU加速,提供多种求解算法,包括自适应和固定步长方法。支持可微分事件处理功能,适用于深度学习研究。torchdiffeq为研究人员提供了实现和探索基于ODE的机器学习模型的工具。
xgboost - 高效灵活可扩展的梯度提升算法库
GithubXGBoost分布式计算开源项目数据科学机器学习梯度提升
XGBoost是一款高性能的梯度提升算法库,专为效率、灵活性和可扩展性而设计。它能快速准确地处理大规模数据集,解决各类机器学习问题。XGBoost支持多种分布式环境,可处理超十亿样本的数据。作为开源项目,XGBoost不断通过社区贡献来提升性能和扩展功能。
peft - 大模型高效微调的先进方法
AccelerateDiffusersGithubLoRAPEFTTransformers开源项目
参数高效微调(PEFT)通过只调整少量额外参数来适配大规模预训练模型,大幅降低计算和存储成本,同时性能接近完全微调模型。PEFT与Transformers、Diffusers和Accelerate集成,支持多种下游任务的训练和推理。了解更多方法和优势,请访问官方文档和教程。
catboost - 梯度提升和分类特征支持的机器学习工具
Apache SparkCatBoostGithub决策树开源项目机器学习梯度提升
CatBoost是一种基于决策树的梯度提升算法,具有高准确性和速度优势,能够处理数值和分类特征。它提供快速的GPU训练、直观的可视化工具和与Apache Spark的分布式训练支持,适用于多种应用场景。通过官方文档和教程,用户可以快速上手,并通过参数调优和交叉验证进一步优化模型性能。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号
]}]\n21:null\n"])