Project Icon

UniDepth

单目深度测量的通用算法,兼容多种数据集

UniDepth项目提出了通用的单目深度测量方法,支持多个数据集如NYUv2、KITTI和SUN-RGBD。通过训练模型,该方法可直接从RGB图像生成深度和内参预测,无需预先深度数据。其高精度、低延迟的推理能力在多个基准测试中表现优秀。支持多种输入形状和比例,适合机器人视觉和自动驾驶等应用。

depthai - 深度学习与视频录制的多功能演示应用
DepthAIDockerGithubLuxonisPython依赖安装开源项目
这个项目提供了一个多功能的深度学习API演示程序,支持加载多种神经网络、创建管道和录制视频等功能。附有详细的安装指南和多种使用案例(包括QT GUI界面和命令行模式),用户能够轻松上手和测试DepthAI的功能。项目还支持多种AI模型,并可通过Docker运行,适用于开发者和机器学习爱好者。
UniSeg - 多模态3D医学图像通用分割模型
GithubMICCAI 2023UniSeg分割模型医学图像多器官分割开源项目
UniSeg是一个基于提示驱动的通用分割模型,可对多模态、多领域的3D医学图像进行多器官、肿瘤和椎骨分割。作为强大的分割模型和特征学习器,UniSeg提供完整代码实现、预训练模型及详细使用说明。项目涵盖数据准备、预处理、训练和测试等步骤。在MICCAI SegRap 2023比赛中,UniSeg在两项任务中均获得第二名,展现了其在医学图像分割领域的出色表现。
pytorch-3dunet - 支持语义分割和回归问题的3D U-Net模型实现
3D U-NetGithubpytorch-3dunet安装开源项目训练预测
pytorch-3dunet实现了多种3D U-Net模型及其变体,包括标准3D U-Net、残差3D U-Net和带压缩激励块的残差3D U-Net。该项目支持二元和多分类语义分割以及去噪、学习反卷积等回归问题。项目还支持2D U-Net,提供多种配置示例帮助用户训练和预测。此外,该项目可在Windows和OS X系统上运行,并支持多种损失函数和评估指标,如Dice系数、平均交并比、均方误差等。这一描述更加简洁、流畅,同时保持了准确性。
x-unet - 集成高效注意力机制的先进U-Net框架
GithubU-Net图像分割开源项目深度学习神经网络计算机视觉
x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
Marigold - 基于扩散模型的单目深度估计新方法
GithubMarigold单目开源项目扩散模型深度估计计算机视觉
Marigold项目开发了一种基于扩散模型的单目深度估计方法。该方法利用Stable Diffusion中的视觉知识,通过合成数据微调,实现了对未见数据的零样本迁移。Marigold不仅提供了高精度的深度估计结果,还包含快速推理版本,为计算机视觉领域提供了新的研究方向。
ULIP - 多模态预训练框架实现3D数据理解
3D理解GithubULIP多模态预训练开源项目点云分类零样本分类
ULIP是一种多模态预训练框架,集成了语言、图像和点云数据以增强3D理解能力。该框架适用于多种3D骨干网络,如Pointnet2和PointBERT等,无需增加处理延迟。ULIP-2在此基础上进行了扩展,提高了预训练的可扩展性。项目开源了预训练模型、数据集和使用指南,为3D数据分析奠定了基础。
Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
MonocularRGB_3D_Handpose_WACV18 - 实时单目RGB手部3D姿态估计方法
3D手部姿态估计GithubOpenpose单目RGB相机实时处理开源项目深度学习
MonocularRGB_3D_Handpose_WACV18项目开发了一种基于单个RGB摄像头的实时多手3D姿态估计方法。该方法融合深度学习与生成式技术,实现了不受限场景下的实时单目3D手部姿态估计。项目通过手部检测、2D关节估计和3D模型拟合三个步骤完成姿态估计。代码库包含Ubuntu 16.04二进制文件、Python脚本,支持多种2D关节估计器,并提供Docker配置便于测试。
nnUNet - 自适应医学图像分割深度学习框架
GithubnnU-Net医学影像图像分割开源项目深度学习自动化
nnUNet是一个自适应深度学习框架,专注于医学图像分割。它可自动分析训练数据并优化U-Net分割流程,无需专业知识即可使用。支持2D和3D图像,处理多种模态和输入通道,并能应对不平衡类别分布。在多个生物医学图像分割挑战中表现出色,广泛用作基线方法和开发框架。适用于领域科学家和AI研究人员,为医学图像分析提供强大支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号