Project Icon

egnn-pytorch

PyTorch实现的E(n)等变图神经网络

这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。

annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
GANGithubPyTorchReinforcement LearningTransformerlabml.ai开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
DALLE2-pytorch - Pytorch实现的OpenAI DALL-E 2
DALL-E 2GithubPytorch开源项目文本到图像神经网络自监督学习
DALL-E 2的Pytorch实现由OpenAI开发,采用先进的神经网络技术将文本描述转化为高质量图像。本版本特别优化扩散先验网络,提供高性能的模型变体。开源项目鼓励开发者通过GitHub和Hugging Face参与贡献,并在Discord社区进行交流和支持。
gflownet - 基于图神经网络的离散对象生成框架
GFlowNetGithub图生成开源项目机器学习神经网络组合优化
gflownet是一个实现Generative Flow Network的开源框架,专注于离散和组合对象的生成,尤其适用于图结构。该项目基于图神经网络,支持多种GFN算法,提供离线和在线训练功能。gflownet包含完整的训练环境、算法实现和示例代码,可用于分子设计等任务,是研究GFN在图生成领域应用的有力工具。
the-incredible-pytorch - PyTorch资源,包括教程、项目及工具库等
GithubPyTorch开源项目教程机器学习深度学习神经网络
详尽解析PyTorch生态系统!本项目集成了丰富的教程、库和视频资源,全面覆盖从基本知识到先进技术的不同需求。无论涉及数据可视化、对象检测或模型优化,均提供细致入微的资源,帮助各层次开发者提升机器学习实力。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
graph_nets - DeepMind的图神经网络库,支持TensorFlow和Sonnet
GithubGraph NetsSonnetTensorFlow安装开源项目演示
Graph Nets是由DeepMind开发的图神经网络库,兼容TensorFlow和Sonnet。支持Linux和Mac OS X,以及Python 2.7和3.4+。该库适用于CPU和GPU版本的TensorFlow,但需要单独安装TensorFlow。Graph Nets提供了详细的安装指南、使用示例和多个演示,包括最短路径、排序和物理预测任务。用户可以通过Colaboratory在浏览器中运行这些演示,体验图神经网络的灵活性和强大功能。
TopoNet - 自动驾驶场景拓扑推理的图神经网络方法
GithubOpenLane-V2TopoNet图神经网络场景拓扑推理开源项目自动驾驶
TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
NN-SVG - 高效自动生成神经网络架构图的工具
GithubNN-SVGSVG文件开源项目机器学习深度学习神经网络
NN-SVG是一款通过参数化方式创建神经网络架构图的工具,支持导出为SVG文件,适用于学术论文和网页。它能生成经典全连接神经网络、卷积神经网络和深度神经网络图形,使用D3和Three.js库,用户可自定义图形大小、颜色和布局。该工具旨在节省机器学习研究人员的时间,并可作为教学工具使用。
imagen-pytorch - 文本到图像合成技术,基于Pytorch的Imagen实现
GithubImagenPytorchT5模型开源项目文本到图像神经网络
Google的Imagen是一种基于Pytorch实现的文本到图像神经网络,被视为此领域的新技术标杆。它采用简化的架构和优化的设计,例如级联DDPM、动态剪辑和内存高效的Unet设计。该项目在从文本转换成图像的合成过程中,表现出了相比DALL-E2的显著优势,为研究人员和开发者提供了实用的图像生成工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号