Project Icon

egnn-pytorch

PyTorch实现的E(n)等变图神经网络

这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。

pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
equiformer-pytorch - SE(3)/E(3)等变注意力网络的高效PyTorch实现
AIEquiformerGATv2GithubSE3 Transformers开源项目深度学习
Equiformer-pytorch是一个基于PyTorch的SE(3)/E(3)等变注意力网络实现。该项目采用MLP注意力机制和非线性消息传递,实现了最先进的性能。它支持可逆网络以提高内存效率,并集成了最新的球谐函数稀疏化技术,大幅提升计算效率。Equiformer-pytorch还提供边缘和邻接矩阵支持,适用于蛋白质折叠等各种3D原子图任务。
En-transformer - 融合等变图神经网络与Transformer的创新架构
E(n)-Equivariant TransformerGithub坐标变换开源项目注意力机制神经网络蛋白质设计
En-transformer是一个创新的开源项目,结合了E(n)等变图神经网络与Transformer架构。支持原子和键类型嵌入,处理稀疏邻居,传递连续边特征。已应用于抗体CDR环设计,并可用于蛋白质骨架坐标去噪等分子建模任务。项目提供简便的安装和使用方法,适合研究人员和开发者探索。
gnn - 用于TensorFlow平台的图神经网络库,支持异构和同构图
GithubKeras层TensorFlow GNN分布式图采样工具图神经网络开源项目数据准备工具
TensorFlow GNN是一个用于TensorFlow平台的图神经网络库,支持异构和同构图。它提供了GraphTensor类型来表示多类型节点和边,数据准备工具以及高效的图采样器。库中包含可直接使用的模型和Keras层,提供高层次的训练API。TF-GNN广泛应用于各种图挖掘任务,用户可在Google Colab上无需安装直接运行示例。它兼容TensorFlow 2.12及以上版本和相关GPU驱动,主要在Linux环境测试。
PyDGN - 深度图网络研究与实验的Python开源库
GithubPyDGNPython库图分类开源项目机器学习深度图网络
PyDGN是一个面向深度图网络(DGNs)研究的开源Python库。该库提供自动化的数据处理、实验管理和并行计算功能,支持模型选择与风险评估。PyDGN简化了图学习实验流程,有助于快速原型设计和结果复现,为图神经网络研究提供了实用工具。它支持CPU和GPU并行计算,可同时评估多种模型配置。PyDGN适用于各类深度图网络研究,包括图分类、节点分类等任务。该库提供了完整的实验管理流程,从数据预处理到模型评估,有助于提高研究效率和结果可靠性。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
pyHGT - 大规模异构和动态图的图神经网络解决方案
Deep Graph LibraryGithubHeterogeneous Graph TransformerOAG DataSetWWW 2020pytorch_geometric开源项目
Heterogeneous Graph Transformer (HGT) 是一种基于 Pytorch Geometric 的图神经网络架构,设计用于处理大规模异构和动态图。项目主要包含核心模型代码、数据接口、训练和验证脚本。用户可以使用预处理好的 OAG 数据集或其他异构图进行训练。关键功能包括异构图卷积层、并行采样和深度图模型训练。安装简单,只需通过 pip 安装相关依赖即可运行。
graph-neural-network-course - 图神经网络教程,从基础架构到前沿技术
GithubPyTorch Geometric图分类图神经网络开源项目深度学习节点分类
这个项目是一个全面的图神经网络(GNN)教程,内容涵盖基础架构到最新技术。课程包含四个章节:GNN简介、图注意力网络、GraphSAGE和图同构网络,每章配有详细文章和实践代码。教程旨在帮助学习者掌握GNN的核心概念和实现方法,适合对深度学习感兴趣的研究者和开发者。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
graph-learn - 大规模分布式图神经网络框架,兼容PyTorch和TensorFlow
GithubGraph-Learn分布式框架图神经网络大规模图数据实时推理开源项目
Graph-Learn是一款分布式框架,专为开发和应用大规模图神经网络(GNN)而设计,已成功应用于阿里巴巴的搜索推荐、网络安全和知识图谱等场景。框架包括GraphLearn-Training和Dynamic-Graph-Service模块,支持批量图采样、在线推理及流图更新功能,兼容PyTorch和TensorFlow,提供完整的GNN模型开发解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号