Project Icon

egnn-pytorch

PyTorch实现的E(n)等变图神经网络

这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。

deep-neuroevolution - 深度神经网络进化算法的分布式实现
Deep NeuroevolutionGenetic AlgorithmsGithubMujocoOpenAI开源项目强化学习
本项目提供分布式深度神经网络训练的多种实现,包括深度遗传算法(DeepGA)和进化策略(ES),用于强化学习。基于并改进了OpenAI的代码,支持本地和AWS运行。项目还包括NeuroEvolution的视觉检测工具VINE和GPU优化加速。用户可通过Docker容器快速启动实验,并使用Mujoco进行高级实验。
torchdyn - PyTorch数值深度学习库,支持微分方程和数值方法
GithubPyTorchTorchdyn开源项目微分方程数值方法深度学习
Torchdyn是一个专注于数值深度学习的PyTorch库,涵盖微分方程、积分变换和数值方法。它提供便捷的工具和层,用于构建神经微分方程和复合模型,并支持GPU加速和多种数值方法。该库与PyTorch和pytorch-lightning高度集成,使得用户能够快速上手,推进研究和应用。
EigenGAN-Tensorflow - 层级特征分解的生成对抗网络框架
EigenGANGithub人脸生成图像属性编辑开源项目无监督学习生成对抗网络
EigenGAN-Tensorflow是一个基于TensorFlow实现的生成对抗网络框架,采用层级特征分解方法。该项目提供CelebA和Anime数据集的训练测试代码,可生成和操控高质量人脸与动漫图像。通过特征分解实现图像属性的无监督学习和精确控制,支持多GPU训练,并提供预训练模型。此开源项目为GAN研究和开发提供了实用工具。
EEG-Conformer - 结合卷积和自注意力的EEG解码与可视化工具
EEG ConformerEEG解码Github卷积神经网络大脑波形投影开源项目自注意力机制
EEG Conformer是一种结合卷积和自注意力机制的EEG分类与可视化工具。其卷积模块提取时间和空间上的局部特征,自注意力模块捕捉全局关联,最终通过全连接层进行分类预测。此外,EEG Conformer还具备将类激活映射到脑拓扑图的可视化功能。支持Python 3.10和Pytorch 1.12,在多个BCI竞赛数据集上表现出色。
mmengine - 深度学习训练引擎支持大规模模型训练和多种策略
GithubMMEngineOpenMMLabPyTorch开源项目深度学习训练引擎
MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。
pytorch-fid - 生成对抗网络图像质量评估工具
FIDFréchet Inception DistanceGANsGithubPyTorchTensorflow开源项目
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
ttt-lm-pytorch - 基于测试时训练的高表达能力RNN模型
GithubRNNTTT序列建模开源项目机器学习隐藏状态
ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。
TNN - 轻量级、高效能、多平台支持的开源深度学习框架
GithubTNN人工智能开源项目性能优化模型转换跨平台
TNN,腾讯优图实验室开源的神经网络推理框架,提供针对移动设备和X86/NV GPUs的高效性能优化。该框架已被QQ、微视等多款应用使用,并支持各大平台包括TensorFlow、Pytorch、MxNet。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号