Project Icon

q-transformer

自回归Q函数实现离线强化学习

Q-transformer项目是Google Deepmind提出的可扩展离线强化学习方法的开源实现。该项目通过自回归Q函数优化多动作选择,支持单一和多动作学习,并提供深度对偶架构和n步Q学习。它包含环境交互、数据集创建和学习流程,适用于复杂机器人控制任务。Q-transformer的创新性和灵活性为强化学习研究和应用提供了重要工具。

Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
PointTransformerV3 - 先进的点云处理框架
GithubPoint Transformer V3开源项目深度学习点云处理计算机视觉语义分割
PointTransformerV3是一个创新的点云处理框架,在多个基准测试中展现出卓越性能。该项目优化了模型结构,提升了运行速度和处理能力。它适用于室内外场景的语义分割,通过多数据集预训练进一步增强了效果。研究人员可利用开源代码和预训练模型轻松复现结果或应用于自身项目。
Qwen1.5-32B - 提供稳定多语言支持的Transformer语言模型
GithubHuggingfaceQwen1.5-32BTransformer架构多语言支持开源项目模型模型性能提高语言模型
Qwen1.5是基于Transformer架构的语言模型,支持多语言和多种模型尺寸,适合不同需求。相比前版本,该模型显著提升了聊天性能,并在所有尺寸中稳定支持32K上下文长度,且无需信任远程代码,使用更加便捷。经过大量数据预训练,具备强大文本生成能力,用户可通过后续训练进一步提升性能。详细信息可在Hugging Face和项目博客中查看。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
superpoint_transformer - 高效3D场景语义和全景分割的超点变换器
3D全景分割3D语义分割GithubICCV 2023SuperClusterSuperpoint Transformer开源项目
Superpoint Transformer 是一种超点 transformer 架构,适用于大规模 3D 场景的语义分割。通过自注意机制和层次化超点结构,它能多尺度挖掘超点间关系,性能卓越。同时,SuperCluster 将全景分割任务转化为超点图聚类任务,能在单个 GPU 上处理大规模场景。项目亮点包括显著的SOTA表现、快速训练和预处理等。点击查看更多详情及项目更新。
awesome-graph-transformer - 图变换器最新进展与研究综述
ApplicationsGithubGraph Neural NetworksGraph TransformersScalabilityawesome-graph-transformer开源项目
本页面汇集了关于图变换器的最新研究和文献综述,内容涉及结构编码、可扩展性、应用领域和预训练方法等。通过详细分类和文献引用,帮助读者深入了解不同技术的实现和应用。如有发现错误或遗漏,欢迎提交问题或拉取请求以更新列表。
vram-40 - 优化Transformer模型的内存和性能实现
GithubHuggingfaceTransformers人工智能开源项目机器学习模型深度学习自然语言处理
vram-40项目专注于优化Transformer模型的内存使用和计算性能。通过改进的技术和算法,该项目旨在使大规模语言模型能在有限硬件资源上高效运行。这一实现方案可能有助于提高Transformer模型在各种应用场景中的实用性。
autoformer-tourism-monthly - 基于分解架构的长期时间序列智能预测模型
AutoformerGithubHuggingface分解架构开源项目时间序列预测模型自相关机制长期预测
Autoformer是一个面向长期时间序列预测的开源模型,通过分解架构和自相关机制突破传统Transformer模型的限制。在能源、交通、经济、天气和疾病五大领域的基准测试中,预测精度提升38%,可应用于极端天气预警和能源消耗规划等长期预测场景。
MTR - 自动驾驶多模态运动预测的先进框架
GithubMotion TransformerWaymo数据集多模态运动预测开源项目神经网络自动驾驶
MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。
intel-extension-for-transformers - 提升GenAI与LLM模型性能的先进工具包
GenAIGithubIntel Extension for TransformersLLMTransformer模型开源项目量化推理
Intel® Extension for Transformers是专为提升基于Transformer架构的GenAI/LLM模型而设计的先进工具包。本工具包支持多种平台,如Intel Gaudi2、CPU和GPU,并整合了Hugging Face transformers APIs与Intel® Neural Compressor,提供顺畅的模型压缩过程和多样化的优化选择。此外,工具包含可定制的NeuralChat聊天机器人框架,为用户带来高效的AI交互体验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号