Project Icon

PyEMMA

开源分子动力学模拟分析软件包

PyEMMA是一个开源的Python/C软件包,用于分析大规模分子动力学模拟数据。它提供聚类、特征化、马尔可夫状态模型等算法,支持分子动力学数据的估计、验证和分析。该工具可通过Jupyter notebook或Python脚本使用,适合分子动力学研究人员进行数据分析和建模。PyEMMA具备高性能和易用性,在分子模拟领域广受欢迎。

PaCMAP - 高效保留数据局部和全局结构的降维可视化工具
GithubPaCMAP全局结构可视化局部结构开源项目降维
PaCMAP是一种创新的降维算法,专注于高维数据的可视化。通过优化邻居对、中距离对和远距离对三种点对关系,PaCMAP能同时保留数据的局部和全局结构,突破了传统方法仅关注单一结构的局限。该算法已在机器学习权威期刊JMLR发表,并提供Python和R语言接口,适用于多领域的高维数据可视化分析。PaCMAP在MNIST等多个数据集上展现出优秀的性能,为数据科学家提供了强大的可视化工具。
mmaction2 - 开源视频理解工具箱MMAction2基于PyTorch实现
GithubMMAction2OpenMMLab开源项目模型库行动识别视频理解
MMAction2为基于PyTorch的开源视频理解工具箱,涵盖动作识别、动作定位、时空动作检测等多种任务。项目特点包括模块化设计、丰富的模型库以及详尽文档,支持灵活的自定义配置。
gemma.cpp - 轻量级C++推理引擎 实现Google Gemma模型
C++Gemma模型Githubgemma.cpp开源项目推理引擎机器学习
gemma.cpp是一个轻量级C++推理引擎,为Google Gemma基础模型提供2B和7B版本的简洁实现。项目专注于简单直接而非通用性,适合实验和研究用途。它易于嵌入其他项目并支持修改,利用Google Highway库实现可移植SIMD优化,为大语言模型研究提供灵活平台。
mealpy - 元启发式算法优化库实现多种优化算法
GithubMEALPYPython库优化算法元启发式算法开源软件开源项目
MEALPY实现了215种元启发式算法,是当前最全面的Python优化库之一。它可解决连续和离散优化等多种问题,支持参数分析、性能评估和收敛分析。该库设计简洁,提供结果导出和模型导入导出功能,适用于各类优化任务。MEALPY兼容Python 3.7+,依赖numpy等科学计算库。
py-spy - 轻量级Python程序性能分析工具
GithubPythonpy-spy开源项目性能分析跨平台采样分析器
py-spy是一个开源的Python程序采样分析器,无需修改代码即可可视化程序运行时间分布。使用Rust开发,具有低开销特性,可安全地分析生产环境代码。支持主流操作系统和多个CPython版本,提供性能记录、实时监控和堆栈转储功能。py-spy能生成多种格式的分析报告,包括火焰图,有助于开发者深入了解和优化Python程序性能。
pydlm - 基于Python的贝叶斯时间序列建模库
GithubPyDLMPython库开源项目数据分析时间序列建模贝叶斯动态线性模型
pydlm是一个Python时间序列建模库,基于贝叶斯动态线性模型。它提供了快速的模型拟合和推断,包含趋势、季节性和动态回归等灵活组件。支持前向过滤、后向平滑和长期预测,并具有简洁的API。pydlm适用于构建复杂时间序列模型,进行数据分析和预测。
kshape-python - 高效精准的时间序列聚类算法
Githubk-Shape开源项目数据挖掘无监督学习时间序列聚类机器学习
kshape-python是一种用于单变量和多变量时间序列聚类的高效无监督算法。该方法在ACM SIGMOD 2015会议上获得最佳论文奖,已在多个科学领域和知名企业中广泛应用。kshape-python在准确性和效率方面表现出色,在包含100多个数据集的基准测试中名列前茅。该项目提供CPU和GPU版本实现,可处理大规模时间序列数据。项目提供详细的安装说明、使用示例和基准测试结果,支持单变量和多变量时间序列数据,可在CPU或GPU上运行。该方法在UCR和UAE两个established benchmarks上进行了评估,展示了其在不同数据集上的性能。
ByProt - 先进的蛋白质序列设计工具包
AI建模ByProtGithub反向折叠开源项目机器学习蛋白质设计
ByProt是一个专注于蛋白质研究中生成学习的多功能工具包。它主要用于基于结构的序列设计,提供高效的非自回归ProteinMPNN变体和LM-Design的官方实现。LM-Design作为ICML 2023口头报告的成果,是当前最先进的蛋白质序列设计模型。该工具包支持CATH和多链数据集的训练与评估,为研究人员提供灵活的蛋白质设计方案。
emsdk - Emscripten工具链管理器 简化WebAssembly开发环境搭建
Emscripten SDKGithubWebAssembly开发环境开源项目编译工具跨平台开发
emsdk是Emscripten工具链的管理器,提供Clang、Python和Node.js等必要工具。它支持预编译包安装和源码构建,适用于主流操作系统。emsdk实现了版本切换、最新开发分支支持和GitHub分支集成,简化了WebAssembly开发环境的搭建和维护过程。通过emsdk,开发者可以轻松获取、更新和管理Emscripten相关工具,提高WebAssembly项目的开发效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号