Project Icon

MiraData

长时视频数据集助力AI视频生成研究

MiraData是一个为长视频生成任务设计的大规模数据集。其特点包括平均72秒的视频长度和详细的结构化字幕。数据集提供330K、93K、42K和9K四个版本,每个视频配有六类字幕:主要对象、背景、风格、相机运动、简短摘要和详细描述。这些特性使MiraData成为改进长序列视频处理和镜头转换建模的重要资源。

VideoMamba - 突破性的视频理解状态空间模型
GithubVideoMamba多模态兼容性开源项目状态空间模型视频理解长期视频建模
VideoMamba是一种创新的视频理解模型,克服了现有技术的局限性。它能高效处理长视频和高分辨率内容,展现出可扩展性、短期动作识别敏感性、长期视频理解优势和多模态兼容性四大核心特点。VideoMamba为全面的视频理解任务提供了高效解决方案,推动了该领域的发展。
VADER - 基于奖励梯度的视频生成质量优化技术
AIGithubVADER开源项目机器学习视觉处理视频生成
VADER是一种基于奖励梯度的视频生成质量优化技术。该方法无需大规模标注数据集,即可有效提高视频与文本的一致性、美观度,并生成更长时间的高质量视频。VADER兼容多个主流视频生成模型,如VideoCrafter2、Open-Sora和ModelScope,能显著提升其生成能力。项目提供了详细的安装、推理和训练指南,便于研究人员和开发者进行实验和应用。
videollm-online - 流式视频实时理解与交互的先进模型
GithubVideoLLM-online大语言模型实时交互开源项目流媒体视频视频处理
VideoLLM-online是一款针对流媒体视频的在线大语言模型。该模型支持视频流实时交互,可主动更新响应,如记录活动变化和提供实时指导。项目通过创新的数据合成方法将离线注释转化为流式对话数据,并采用并行化推理技术实现高速处理,在A100 GPU上处理速度可达10-15 FPS。VideoLLM-online在在线和离线环境中均表现出色,能高效处理长达10分钟的视频,为视频理解与交互领域带来新的可能性。
awesome-video-generation - 全面汇集视频生成研究的前沿资源库
AI视频Github图像到视频开源项目扩散模型文本到视频视频生成
资源库系统整理视频生成领域的前沿研究论文和资源,包括文本生成视频、图像生成视频、个性化视频生成等多个方向。内容涵盖论文列表、链接、数据集、产品介绍和常见问题解答。这为研究人员和开发者提供了全面了解视频生成技术发展的专业参考。
videomae-large - 视频自监督学习的高效模型
GithubHuggingfaceVideoMAE开源项目模型自监督视频分类视频预训练
VideoMAE大型模型在Kinetics-400数据集上进行自监督预训练,采用掩码自编码器方法,有效学习视频的内在表示。利用视觉Transformer架构,通过将视频划分为固定大小的图像块,结合线性嵌入和位置编码,进行深度分析和像素预测,适用于多种后续任务和特征提取,包括视频分类和处理。
MINT-1T - 万亿级开源多模态数据集推动AI研究
GithubMINT-1T图文数据多模态数据集开源数据开源项目海量数据
MINT-1T是一个大规模开源多模态数据集,包含1万亿文本标记和34亿张图像,比现有开源数据集规模扩大约10倍。该数据集首次纳入PDF和ArXiv论文等新数据源,提供HTML、PDF和ArXiv等多个子集。MINT-1T旨在为大规模多模态AI模型研究提供丰富的训练资源,其规模和多样性有望促进多模态AI技术的发展。
Gen-L-Video - 无需额外训练实现多文本条件长视频生成和编辑
Gen-L-VideoGithub多文本条件开源项目无需预训练视频编辑长视频生成
Gen-L-Video是一种扩展短视频扩散模型的视频生成方法,能实现多文本条件下的长视频生成和编辑。该方法无需额外训练即可处理数百帧的视频,并保持内容一致性。Gen-L-Video支持多语义段视频生成、平滑语义变化和视频内容编辑等功能,为长视频处理提供了一种通用解决方案。
TATS - 创新长视频生成框架 基于时间无关VQGAN和时间敏感Transformer
GithubTATSTransformerVQGAN开源项目视频生成长视频生成
TATS项目是一个创新的长视频生成框架,通过结合时间无关的VQGAN和时间敏感的Transformer模型,实现了高效的长视频生成。该技术仅需使用数十帧视频进行训练,就能利用滑动窗口方法生成包含数千帧的连贯视频。TATS支持无条件生成以及基于文本、音频等条件的视频生成,为视频内容创作开辟了新的可能性。
data - 开源Python视频和元数据集合
CC0许可GithubPython元数据开源贡献开源项目视频数据
pyvideo/data是一个开源项目,专注于收集和整理Python相关的视频资源及其元数据。项目包含大量Python演讲、教程和会议录像,采用CC0许可发布。开发者可通过GitHub参与贡献,共同扩充这个Python视频资料库。项目特别注重保护视频所有者的权益,维护了一个不允许发布的视频ID列表。
VideoGPT-plus - 双编码器融合提升视频理解能力
GithubVideoGPT+人工智能多模态模型开源项目视频对话视频理解
VideoGPT+是一个创新的视频对话模型,通过集成图像和视频编码器,实现了更精细的空间理解和全局时间上下文分析。模型采用自适应池化技术处理双编码器特征,大幅提升了视频基准测试性能。项目同时推出VCG+ 112K数据集和VCGBench-Diverse基准,为视频对话任务提供全面评估。VideoGPT+在空间理解、推理和视频问答等多项任务中表现优异。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号