Project Icon

mlx

为Apple芯片优化的开源机器学习框架

MLX是一款针对Apple芯片优化的开源机器学习框架。它具有类NumPy的Python接口、可组合的函数转换、惰性计算和动态图构建等特性。通过统一内存模型,MLX支持在CPU和GPU间无缝切换。该框架为机器学习研究者提供了友好高效的开发环境,有助于快速验证创新想法。

neoml - 跨平台多语言支持的端到端机器学习框架
ABBYYGithubNeoMLONNX开源项目机器学习框架神经网络
NeoML是一个端到端机器学习框架,可用于构建、训练和部署模型,适用于计算机视觉和自然语言处理任务,如图像预处理、分类、OCR和数据提取。支持100多种神经网络层类型和20多种传统机器学习算法,兼容CPU和GPU,并支持ONNX格式。适用的编程语言包括Python、C++、Java和Objective-C,且可运行于Windows、Linux、macOS、iOS和Android平台。
mac-ml-speed-test - Apple Silicon Mac机器学习性能测试工具
GithubMacPyTorchTensorFlow开源项目性能测试机器学习
mac-ml-speed-test是一个专为Apple Silicon Mac设计的机器学习性能测试项目。通过简单脚本对比不同Mac设备上的机器学习模型速度,涵盖计算机视觉和自然语言处理等领域。项目使用PyTorch、TensorFlow等主流框架,并提供详细配置指南,便于用户进行性能评估。测试内容包括图像分类、文本分类和LLM文本生成等任务,使用CIFAR100、Food101和IMDB等数据集。此外,项目还包括与NVIDIA TITAN RTX和Google Colab免费版的性能对比,为用户提供更全面的参考数据。
mlx-vlm - 在Mac上运行Vision LLMs的MLX-VLM软件包
GithubMLXMLX-VLMMacVision LLMs安装包开源项目
MLX-VLM是一款在Mac上运行Vision LLMs的开源软件包,支持通过pip安装。用户可以使用命令行界面(CLI)、Gradio聊天UI或脚本进行模型推理。该软件包支持多个预训练模型,便捷地应用聊天模板并生成输出,是开发人员和研究人员进行视觉问答的实用工具。
max - 一套集成的AI库、工具和技术
AIGithubMAX工具链开源项目推理硬件可移植性
MAX平台是一套集成的AI库、工具和技术,统一了分散的AI部署工作流。通过提供单一开发工具链,MAX显著缩短了创新产品的上市时间,同时具备完全编程能力、卓越的性能和顺畅的硬件兼容性。文档、代码示例和Jupyter笔记本等资源可帮助用户快速起步,并提供社区支持和交流。
PicoMLXServer - 简化MLX AI模型管理的工具
AI助手GithubHuggingFaceMLXOpenAI APIPico MLX Server开源项目
Pico MLX Server提供简单易用的图形界面,便于管理MLX AI模型。通过菜单栏可以迅速启动和停止服务器,用户还可以从HuggingFace下载MLX模型,安装Python环境和必要依赖,并在多个端口同时运行多个服务器。此外,Pico MLX Server兼容OpenAI API,支持现有的AI聊天客户端。适用于macOS 14.0及以上版本。
axlearn - 支持构建大规模深度学习模型的高效工具库
AXLearnGithubJAXXLA开源项目机器学习深度学习
AXLearn是一个基于JAX和XLA的深度学习库,支持大规模模型的构建、迭代和维护。该库允许用户通过配置系统从可重用模块中组合模型,并兼容Flax和Hugging Face transformers等库。AXLearn能够高效地在众多加速器上训练数百亿参数的模型,涵盖自然语言处理、计算机视觉和语音识别等领域,还支持在公共云上运行并提供作业和数据管理工具。了解更多详情,请参阅其核心组件和设计文档。
mflux - Mac专用的FLUX模型AI图像生成工具
AI绘图FLUXGithubHuggingface DiffusersMLXMacFLUX开源项目
mflux是基于Apple MLX框架的FLUX模型开源实现,为Mac设备优化的AI图像生成工具。它支持本地运行FLUX.1-Schnell模型,可生成1024x1024分辨率图像,无需云服务。项目代码简洁,专注于模型表达,适合学习和开发。未来计划支持更多FLUX模型和功能。
openmlsys-zh - 现代机器学习系统设计与实现全面指南
GithubOpenMLSys实现经验开源项目机器学习系统设计原理
该开源项目全面介绍现代机器学习系统的设计和实现,涵盖编程接口、计算图、编译器技术、硬件加速等核心内容。同时探讨推荐系统、联邦学习、强化学习等前沿领域的系统实现。项目内容适合学生、研究人员和开发者,有助于读者深入理解机器学习系统,提升实际应用和开发能力。
mlc-llm - 通用大语言模型高性能部署引擎
AI模型优化GithubMLC LLMMLCEngine开源项目机器学习编译器高性能部署
MLC LLM是一款用于大语言模型的高性能部署引擎,支持用户在各种平台上开发、优化和部署AI模型。核心组件MLCEngine通过REST服务器、Python、JavaScript、iOS和Android等接口提供OpenAI兼容的API,支持AMD、NVIDIA、Apple和Intel等多种硬件平台。项目持续优化编译器和引擎,与社区共同发展。
paxml - 基于Jax的高效机器学习实验配置和运行框架
Cloud TPUGithubGooglePaxml开源项目性能优化机器学习
Paxml是一个基于Jax的开源框架,致力于机器学习实验的配置与运行。该框架支持云TPU VM快速部署,同时提供PyPI和GitHub的稳定及开发版本下载。Paxml还包含丰富的文档资源和Jupyter Notebook教程,支持GPU加速,并可广泛适用于不同开发者的需求,是推动机器学习实验项目高效发展的优选工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号