Project Icon

mlx

为Apple芯片优化的开源机器学习框架

MLX是一款针对Apple芯片优化的开源机器学习框架。它具有类NumPy的Python接口、可组合的函数转换、惰性计算和动态图构建等特性。通过统一内存模型,MLX支持在CPU和GPU间无缝切换。该框架为机器学习研究者提供了友好高效的开发环境,有助于快速验证创新想法。

neural-engine - 如何利用Apple Neural Engine提升机器学习模型的性能以及其局限性的介绍
Core MLGithubNPUNeural Engine开源项目机器学习苹果
本页面全面介绍了如何利用Apple Neural Engine提升机器学习模型的性能,并指出其局限性。探讨NPU的工作原理,解答常见问题,解析部分Core ML模型为何无法充分利用ANE。还提供了具体设备支持列表和编程指南,帮助开发者优化模型,实现iPhone和iPad上的最佳计算性能。
mlir-aie - MLIR驱动的AI引擎工具链 助力AI设备性能优化
AI EngineAMDGithubMLIRRyzen AIVersal开源项目
mlir-aie是一个基于MLIR的开源工具链,专为AMD Ryzen™ AI和Versal™等AI引擎设备设计。它通过多层抽象的MLIR表示,实现AI引擎核心编程、数据移动和阵列连接描述。项目提供Python API接口,支持后端代码生成,并集成AMD Vitis™软件中的AI引擎编译器。作为面向工具开发者的项目,mlir-aie提供AIE设备的低级访问,促进多样化编程模型的开发。
coremltools - Core ML格式模型转换和优化工具
Core MLCore ML ToolsGithubPython包开源项目机器学习模型转换
coremltools工具可以将TensorFlow、PyTorch、scikit-learn等机器学习模型转换为Core ML格式,并支持对这些模型的读写、优化和验证。这些模型可以无缝集成到Xcode项目中使用。
MIVisionX - AMD开源计算机视觉和机器智能开发工具包
AMDGithubMIVisionXOpenVX开源项目机器学习计算机视觉
MIVisionX是一套开源的计算机视觉和机器智能开发工具包。它包含优化的OpenVX实现、神经网络模型编译器和多种实用工具。支持ONNX和NNEF格式,可在嵌入式设备到高性能服务器等多种硬件平台上部署计算机视觉和机器学习应用。
TensorLayerX - 兼容多后端的AI框架,支持深度学习开发
AI框架GithubTensorLayerX多后端开源项目模型部署深度学习
TensorLayerX是一款支持多种后端(如TensorFlow、PyTorch、MindSpore、PaddlePaddle)的AI框架,允许用户在不同硬件上运行代码。该项目由北京大学、鹏城实验室、香港科技大学、帝国理工学院、普林斯顿大学、牛津大学、斯坦福大学、清华大学和爱丁堡大学的研究员维护,具备高度兼容性、丰富的模型库和便捷的部署能力,为深度学习开发者提供支持。
nx - Elixir的多维数组和数值计算库集合
EXLAGithubNxTorchx多维数组开源项目数值计算
该项目集合包括Nx,一个用于Elixir的多维数组和数值计算库;EXLA,基于Google XLA的编译器/后端;以及Torchx,基于LibTorch的后端。每个项目都有独立的README文件。未来,这些项目将独立存储。EXLA项目还包含了示例和基准测试。更多关于Elixir中机器学习的介绍,请访问组织页面。
DirectML - 跨平台硬件加速机器学习库,支持多种GPU
DirectMLDirectX 12GPU加速Github开源项目机器学习硬件加速
DirectML是一款基于DirectX 12的高性能机器学习库,为常见机器学习任务提供GPU加速。它支持AMD、Intel、NVIDIA等多种DirectX 12兼容GPU,与Direct3D 12无缝集成,具有低开销和跨硬件一致性。DirectML适用于需要高性能和可靠性的机器学习应用,可集成到Windows ML、ONNX Runtime、PyTorch和TensorFlow等主流框架中。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
traceml - 机器学习数据追踪与可视化工具,支持多种深度学习框架
GithubPolyaxonTraceML开源项目数据追踪机器学习深度学习
TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。
onnx - 跨平台开源机器学习模型交换格式
GithubGlobal Corporation人工智能企业安全开源项目社交媒体跨平台应用
ONNX是一种开放的机器学习模型表示格式,支持跨框架模型互操作。它定义了统一的模型表示方式,实现不同AI框架间的模型转换。ONNX简化模型部署过程,提升AI应用效率。作为行业标准,ONNX促进AI生态系统发展,为开发者和企业带来更多可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号