Project Icon

ncps

NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现

神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。

pytorch-cpp - C++ 实现的 PyTorch 教程,为深度学习研究者提供从基础到高级的全面指南
C++GithubLibTorchPyTorch开源项目教程深度学习
本项目提供了 C++ 版本的 PyTorch 教程,适用于从基础到高级的深度学习研究者,涵盖线性回归、卷积神经网络和生成对抗网络等内容。支持 macOS、Linux 和 Windows 的多平台编译和运行,项目要求包括 C++-17 兼容编译器、CMake 和合适版本的 LibTorch。含有全面的构建与运行指南,以及交互式教程和 Docker 支持。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
NeuralNetworkRacing - 基于神经网络的2D自动驾驶模拟器
2D模拟Githubpyglet开源项目神经网络自动驾驶进化算法
NeuralNetworkRacing是一个使用Python开发的2D自动驾驶模拟项目。它结合神经网络和进化算法,训练虚拟汽车在生成的赛道上自主行驶。项目基于pyglet和numpy库实现,包含环境模拟、赛道生成等功能。通过配置文件,用户可以调整人口数量、突变率等参数。该开源项目为AI和自动驾驶领域提供了一个实验平台。
carefree-learn - 简化深度学习流程,支持PyTorch高效训练与推理
AI模型GithubMIT许可PyTorchdeep learning开源项目模块化
carefree-learn项目致力于简化深度学习流程,特别是基于PyTorch的训练与推理。采用模块优先、原生兼容的设计原则,支持AI模型推理,符合现代AI的发展趋势,并遵循MIT许可证。项目提供易于使用的接口和高性能模块,适合开发者与使用者。
neurodiffeq - 神经网络求解微分方程的开源Python库
GithubPyTorchneurodiffeq开源项目微分方程深度学习神经网络
neurodiffeq是一个开源Python库,专门用于利用神经网络求解微分方程。它支持求解常微分方程和偏微分方程,可处理初值和边界值问题。该库提供灵活API,允许自定义神经网络结构、采样策略和监视器。neurodiffeq还支持方程束和反问题求解,能同时处理一系列参数化方程。这使其成为科学和工程领域中解决各类微分方程问题的实用工具。
sd-controlnet-mlsd - 结合M-LSD直线检测优化Stable Diffusion的图像生成
ControlNetGithubHuggingfaceM-LSDStable Diffusion开源项目扩散模型条件输入模型
该项目介绍了ControlNet神经网络结构,通过加入M-LSD直线检测等条件来控制大规模扩散模型,适用于Stable Diffusion。ControlNet能够在小数据集下进行稳健学习,且可在个人设备上快速训练。项目提供了多种检查点,涵盖边缘检测、深度估计和关键点检测,丰富了大规模扩散模型的控制方式,有助于推进相关应用的发展,最佳效果在Stable Diffusion v1-5结合使用时体现。
Neuralhub - 一体化神经网络开发与协作环境
AI工具AI研究Neuralhub协作平台深度学习神经网络
Neuralhub是面向AI爱好者、研究人员和工程师的一站式深度学习平台。它提供简化的神经网络开发环境,集成了从头构建网络的工具、丰富的预设组件库和高质量预训练模型。作为人工智能创新中心,Neuralhub不仅支持实验和技术突破,还培育了活跃的知识共享与协作社区。通过整合先进工具、前沿研究成果和海量模型资源,Neuralhub致力于让AI研究、学习和开发更加便捷高效,推动深度学习技术的普及与进步。
Deep-Learning-Experiments - 深度学习实验和课程指南,涵盖理论与实践
Deep LearningGithubLLMPyTorchSupervised LearningTransformer开源项目
本页面介绍2023版深度学习实验课程,包括理论与实践内容。涵盖监督学习、多层感知器、优化、正则化、卷积神经网络、变压器、自编码器、生成对抗网络和大型语言模型等主题,并提供开发环境、Python、Numpy、PyTorch及Gradio的实践指南。所有文档和代码示例在GitHub上提供,帮助学习者掌握深度学习技术。
netron - 多格式神经网络和机器学习模型查看器
GithubNetron开源项目机器学习模型查看器深度学习神经网络
支持多种格式的神经网络、深度学习和机器学习模型查看,包括ONNX、TensorFlow Lite、Core ML、Keras和Caffe等,实验性支持PyTorch、TorchScript等。适用于macOS、Linux、Windows和浏览器版本,提供简单的安装和启动方式,方便不同操作系统用户使用。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号