Project Icon

ncps

NCP、LTC 和 CfC 有线神经模型的 PyTorch 和 TensorFlow 实现

神经电路策略(NCPs)是一种设计稀疏递归神经网络的方法,灵感来源于秀丽隐杆线虫的神经系统。该开源项目提供与PyTorch和TensorFlow兼容的模块,增强可审计的自主性。其安装步骤简便,并且提供了丰富的文档和互动教程,帮助用户从基础到复杂模型的创建。多种示例和教程,包括在Google Colab上的演示,让用户快速掌握NCPs的应用。

llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
ffn - 专为大脑组织体积EM数据集实例分割的神经网络
Flood-Filling NetworksGithubTensorFlow图像处理实例分割开源项目神经网络
Flood-Filling Networks (FFNs) 是一种专为复杂大型形状实例分割设计的神经网络模型,特别适用于大脑组织的体积电子显微镜数据集。FFN模型在处理大规模、高分辨率的神经影像数据时表现出色,能够准确识别和分割复杂的神经元结构。该开源项目在FIB-25数据集上展现了优秀性能,为神经科学研究提供了强大的分割工具,适合需要高精度神经元分割的研究人员使用。
nnabla-rl - 深度强化学习库,基于Neural Network Libraries构建
GPU加速GithubPythonnnablaRL开源项目深度强化学习神经网络库
nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。
LPCNet - 低复杂度神经语音合成与压缩算法
GithubLPCNet低复杂度算法开源项目神经网络线性预测语音合成
LPCNet是一种基于WaveRNN的低复杂度语音合成算法实现。通过结合线性预测技术,该项目在普通CPU上实现高质量语音合成,并支持1.6 kb/s的超低比特率压缩。LPCNet提供开源代码用于语音合成和编码研究,包括模型训练、优化以及实时包损失隐藏等功能,为语音技术研究和应用奠定基础。
control_v11e_sd15_ip2p - 更好地控制扩散模型的图像处理能力
ControlNetGithubHuggingface图像生成开源项目扩散模型条件输入模型稳态扩散
本项目利用ControlNet v1.1提供了一种神经网络结构,能够通过附加条件控制预训练的大型扩散模型,与Stable Diffusion兼容。其支持指令化像素到像素的控制,通过边缘图、分割图和关键点等条件输入丰富图像生成方式。即便在小规模数据集下,ControlNet也能在个人设备上快速训练,相关源码及文档可在HuggingFace平台获取,适用于多种图像生成任务,提升图像处理灵活性。
bindsnet - 模拟尖峰神经网络的生物启发机器学习算法
BindsNETGithubPyTorch开源项目强化学习机器学习脉冲神经网络
BindsNET是一个Python库,通过PyTorch的Tensor功能在CPU或GPU上模拟尖峰神经网络(SNNs)。该库旨在开发生物启发的机器学习和强化学习算法,包含丰富的实验示例和结果分析。BindsNET还兼容OpenAI gym环境库,并支持Docker镜像部署。这一项目在生物启发神经与动态系统实验室进行,核心理念是利用尖峰时间依赖可塑性(STDP)来调整神经元间的突触权重,以解决机器学习和强化学习中的问题。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号