Project Icon

gsplat

开源CUDA加速3D高斯渲染库

gsplat是一个基于CUDA的开源高斯渲染库,支持Python接口。该库利用3D高斯分布实现实时辐射场渲染,性能优于原始论文实现。gsplat可应用于3D高斯模型训练、2D图像拟合和大规模场景实时渲染。库提供PyPI和源码安装方式,包含多个示例和基准测试。项目持续改进中,欢迎开发者参与贡献。

meshgpt-pytorch - 基于注意力机制的先进3D网格生成框架
3D建模GithubMeshGPT开源项目深度学习神经网络计算机图形学
MeshGPT-Pytorch是一个开源项目,专注于利用注意力机制实现3D网格生成。它基于PyTorch开发,支持可变长度面处理,并提供自动编码器和转换器模型。该项目计划引入文本条件控制功能,实现从文本到3D模型的转换。通过文本条件生成和分层转换器等高级特性,MeshGPT-Pytorch为3D内容创作和研究领域提供了先进的技术支持。
gpustat - 简洁高效的NVIDIA GPU监控工具
GPU监控GithubNVIDIAPython工具gpustat开源项目系统资源
gpustat是一款专为NVIDIA显卡设计的GPU监控工具。它提供简洁的输出,支持实时监控、进程信息显示和JSON输出等功能。通过pip可以轻松安装,并且提供多种命令行选项以自定义显示内容。gpustat兼容Python 3.6+,要求NVIDIA驱动450.00或更高版本。这个工具适用于GPU资源管理和性能监控。
unet.cu - UNet扩散模型的高性能CUDA实现
CUDAGithubUNet卷积神经网络图像生成开源项目深度学习
这个开源项目使用纯C++/CUDA实现了UNet扩散模型训练框架,支持无条件扩散。框架包含线性层、组归一化、注意力等核心算子的GPU加速实现,重点优化3x3卷积。通过多次迭代提升CUDA kernel性能,训练速度达PyTorch的40%。项目展示了深度学习框架在GPU上的高效实现过程,为相关开发提供参考。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
pygmo2 - 大规模并行优化Python库
GithubPython库pygmo优化算法并行计算开源项目科学计算
pygmo是一个开源的、用于大规模并行优化的科学Python库。它围绕提供优化算法和优化问题的统一接口而构建,使其易于在大规模并行环境中部署。该库支持多目标优化和多种优化算法,能够高效处理复杂的优化问题和大规模数据。pygmo提供了全面的文档和教程,适用于研究、教学以及各种实际应用场景。其强大的功能和灵活性使其成为解决复杂优化挑战的理想工具。
PyDGN - 深度图网络研究与实验的Python开源库
GithubPyDGNPython库图分类开源项目机器学习深度图网络
PyDGN是一个面向深度图网络(DGNs)研究的开源Python库。该库提供自动化的数据处理、实验管理和并行计算功能,支持模型选择与风险评估。PyDGN简化了图学习实验流程,有助于快速原型设计和结果复现,为图神经网络研究提供了实用工具。它支持CPU和GPU并行计算,可同时评估多种模型配置。PyDGN适用于各类深度图网络研究,包括图分类、节点分类等任务。该库提供了完整的实验管理流程,从数据预处理到模型评估,有助于提高研究效率和结果可靠性。
cucim - 提升多维图像处理性能的开源库
GPU加速GithubRAPIDScuCIM图像处理多维图像开源项目
cuCIM 是一个开源的高性能多维图像处理和计算机视觉软件库,应用于生物医学、地理空间、材料科学、生命科学和遥感领域。利用基于 GPU 的加速技术,cuCIM 提供了增强的大规模和多维 TIFF 文件处理能力,并且支持简便的 Python 接口和多种图像格式,如 Aperio ScanScope 虚拟切片、Philips TIFF 和多分辨率压缩 TIFF 文件。
thundersvm - GPU加速的开源支持向量机库
GPU加速GithubThunderSVM并行计算开源项目支持向量机机器学习
ThunderSVM是一个开源的支持向量机库,通过GPU和多核CPU加速计算,显著提高SVM训练效率。该库实现了LibSVM的全部功能,支持一类SVM、SVC、SVR和概率SVM等多种模型。ThunderSVM提供Python、R、Matlab和Ruby等多种编程语言接口,跨平台兼容Linux、Windows和MacOS。采用与LibSVM一致的命令行参数,便于用户快速上手。作为高效的SVM实现,ThunderSVM为数据科学家和机器学习研究者提供了强大的工具支持。在某些大规模数据集上,ThunderSVM相比传统SVM实现可实现10-100倍的加速,已被多个知名机器学习项目采用。
vedo - Python 3D科学分析与可视化库
3D可视化GithubPython库vedo开源项目数据分析科学分析
vedo是一个Python库,用于科学分析和3D对象可视化。它支持多种3D文件格式,提供网格和点云处理工具,可进行体积数据渲染和2D/3D绘图。vedo集成多个库,支持命令行操作,适用于科研可视化。项目包含300多个示例,在多篇科研论文中应用。
pytorch_scatter - 优化分散操作的 PyTorch 扩展库
CPUGPUGithubPyTorch开源项目数据处理高性能计算
该扩展库为PyTorch提供了高效的稀疏更新和分段操作,包含scatter、segment_coo和segment_csr,支持sum、mean、min和max等归约方式。操作可适用于不同数据类型,并支持CPU和GPU。复合功能包括scatter_std、scatter_logsumexp、scatter_softmax和scatter_log_softmax。安装过程简单,适用于各大操作系统和PyTorch/CUDA组合。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号