Project Icon

EchoTorch

高效回声状态网络研究工具库

EchoTorch是基于PyTorch的回声状态网络研究工具库,专注于实现和测试多种ESN模型。该库提供丰富的ESN组件、数据集和评估工具,支持概念器和内存管理等高级功能。EchoTorch的模块化设计便于集成到深度学习架构中,为ESN研究提供灵活性。它还包含数据转换、优化算法和可视化工具,是进行ESN相关实验和研究的理想选择。


EchoTorch is a python module based on PyTorch to implement and test various flavours of Echo State Network models. EchoTorch is not intended to be put into production but for research purposes. As it is based on PyTorch, EchoTorch's layers are designed to be integrated into deep architectures for future work and research.

Tweet

Join our community to create datasets and deep-learning models! Chat with us on Gitter and join the Google Group to collaborate with us.

Development status

PyPI - Python Version Documentation Status

Builds

Master

Build Status

Dev

Upload Python Test Package Python package testing

Index

This repository consists of:

Examples

Here is some examples of what you can do with EchoTorch.

Tutorials

In addition to examples, here are some Jupyter tutorials to learn how Reservoir Computing works.

Code and papers

Here are some experimences done with ESN and reproduced with EchoTorch :

Getting started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

You need to following package to install EchoTorch.

  • sphinx_bootstrap_theme
  • future
  • numpy
  • scipy
  • scikit-learn
  • matplotlib
  • torch==1.3.0
  • torchvision==0.4.1

Installation

pip install EchoTorch

Authors

License

This project is licensed under the GPLv3 License - see the LICENSE file for details.

Citing

If you find EchoTorch useful for an academic publication, then please use the following BibTeX to cite it:

@misc{echotorch,
  author = {Schaetti, Nils},
  title = {EchoTorch: Reservoir Computing with pyTorch},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nschaetti/EchoTorch}},
}

A short introduction

Classical ESN training

You can simply create an ESN with the ESN or LiESN objects in the nn module.

esn = etnn.LiESN(
    input_dim,
    n_hidden,
    output_dim,
    spectral_radius,
    learning_algo='inv',
    leaky_rate=leaky_rate
)

Where

  • input_dim is the input dimensionality;
  • h_hidden is the size of the reservoir;
  • output_dim is the output dimensionality;
  • spectral_radius is the spectral radius with a default value of 0.9;
  • learning_algo allows you to choose with training algorithms to use. The possible values are inv, LU and sdg;

You now just have to give the ESN the inputs and the attended outputs.

for data in trainloader:
    # Inputs and outputs
    inputs, targets = data

    # To variable
    inputs, targets = Variable(inputs), Variable(targets)

    # Give the example to EchoTorch
    esn(inputs, targets)
# end for

After giving all examples to EchoTorch, you just have to call the finalize method.

esn.finalize()

The model is now trained and you can call the esn object to get a prediction.

predicted
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号