Project Icon

InterFuser

多传感器融合技术助力安全增强自动驾驶

该项目融合多模态多视角传感器信息,实现综合场景理解,生成可解释的中间特征,确保动作在安全范围内。该方法在CARLA AD排行榜上取得了最新成果,项目还提供了详细的数据生成、训练和评估步骤,以及实用工具脚本和预训练权重。

TopoNet - 自动驾驶场景拓扑推理的图神经网络方法
GithubOpenLane-V2TopoNet图神经网络场景拓扑推理开源项目自动驾驶
TopoNet是一个端到端框架,用于推理自动驾驶场景中车道中心线和交通元素间的连接关系。该框架采用图神经网络和知识图结构,整合异构特征并加强特征交互。TopoNet在OpenLane-V2数据集上展现了领先性能,为自动驾驶场景拓扑推理树立新标准。项目提供开源代码和预训练模型,促进自动驾驶研究发展。
LaneGCN - 基于车道图表示的车辆运动预测方法
GithubLaneGCN开源项目自动驾驶计算机视觉车道图表示运动预测
LaneGCN是一种基于车道图表示的车辆运动预测方法。该方法利用图卷积网络处理复杂道路拓扑,提高了预测准确性。LaneGCN在Argoverse运动预测竞赛中取得第一名,显示了其在自动驾驶领域的应用潜力。项目提供了开源代码和预训练模型,便于研究人员进行复现和深入研究。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
MapTR - 在线向量化高精度地图快速构建框架
GithubMapTR人工智能开源项目模型自动驾驶高精地图
MapTR是一款高效准确的在线向量化高精度地图构建框架,可应用于自动驾驶系统的复杂场景中。该框架采用统一的置换等效建模方法,结合分层查询嵌入和双向匹配策略,提高了学习过程的稳定性,具备实时推理能力,并在nuScenes和Argoverse2数据集中表现出色。MapTR支持多种地图元素,具备良好的扩展性和灵活性。最新版本MapTRv2提升了性能和收敛速度,并引入了额外的语义中心线,进一步优化下游规划需求。
safe-rlhf - 北京大学开发的AI安全增强框架
BeaverGithub人工智能安全RLHF开源项目数据集模型训练
Safe RLHF是一个由北京大学PKU-Alignment团队开发的开源框架,整合了SFT、RLHF及Safe RLHF训练方法。它支持多种预训练模型,提供大量人工标注数据,能够训练奖励与成本模型,并采用多层次的安全性校验指标。最新发布的版本提供详尽的复现代码和数据集,旨在增强AI模型的安全性和实用性。
ultimateALPR-SDK - 车牌识别及多功能车辆特性检测解决方案
AndroidDeep LearningGithubLicense Plate RecognitionNVIDIAUltimateALPR开源项目
结合最新深度学习技术,ultimateALPR-SDK 提供卓越的识别速度和精度。适用于多个操作系统和编程语言,功能包括车牌识别、夜视图像增强、车辆颜色识别等。通过内置计算减少系统成本,无需专用硬件或网络连接,适用于智能交通。支持多平台并附有详细文档和示例程序,帮助开发者迅速上手。
BEVFormer_tensorrt - BEVFormer和BEVDet的TensorRT高效部署方案
BEV 3D DetectionGPU内存优化GithubTensorRT开源项目推理加速量化
本项目实现BEVFormer和BEVDet在TensorRT上的高效部署,支持FP32/FP16/INT8推理。通过优化TensorRT算子,BEVFormer base模型推理速度提升4倍,模型大小减少90%,GPU内存节省80%。同时支持MMDetection中2D目标检测模型的INT8量化部署。项目提供详细基准测试,展示不同配置下的精度和速度表现。
VoxFormer - 基于稀疏体素变换器的相机驱动3D语义场景补全方法
3D语义场景补全CVPRGithubVoxFormer开源项目计算机视觉语义分割
VoxFormer是一种基于Transformer的创新框架,仅通过2D图像即可生成完整的3D语义体素。它采用两阶段设计:先从深度估计生成可见占据体素查询,再通过密集化阶段生成完整3D体素。在SemanticKITTI数据集上,VoxFormer在几何和语义方面分别提升了20.0%和18.1%,同时将训练所需GPU内存减少约45%。这为相机驱动的3D语义场景补全任务提供了一个强有力的基线。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
UAV_Obstacle_Avoiding_DRL - 深度强化学习驱动的无人机自主避障算法研究
GithubUAV多智能体强化学习开源项目深度强化学习路径规划障碍物避障
本项目研究了深度强化学习在UAV自主避障中的应用,涵盖静态和动态环境。研究结合多智能体强化学习、人工势场法和扰动流场算法等创新技术,并与A*、RRT等传统路径规划方法进行对比。项目实现了MADDPG、TD3、PPO等多种算法,提供MATLAB和Python代码。仿真实验表明,深度强化学习方法在无人机障碍物避免任务中展现出优越性能,为自主导航技术发展提供了新思路。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号