Project Icon

panoptic-segment-anything

零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法

panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。

SAM-Adapter-PyTorch - 提升复杂场景下图像分割效果的开源项目
GithubICCVPyTorchPythonSAM-AdapterSegment Anything开源项目
SAM-Adapter项目提升了SAM在伪装、阴影和医疗图像分割中的表现。最新的更新支持更强大的SAM2骨干网络,并提供多种预训练模型和数据集下载链接,便于快速上手。该项目在IEEE/CVF国际计算机视觉会议上展示,并包含详细的环境配置和训练指南,方便研究人员进行深度学习任务。
EfficientSAM - 基于掩码预训练的实时图像分割模型
EfficientSAMGithub分割模型图像处理开源项目深度学习计算机视觉
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
EVF-SAM - 基于早期视觉语言融合的文本引导图像分割模型
EVF-SAMGithubSAM模型图像分割开源项目视觉语言融合语义分割
EVF-SAM项目通过早期视觉语言融合技术扩展了SAM模型的能力,实现高精度的文本引导图像分割。该模型在T4 GPU上可在几秒内完成推理,计算效率高。最新版本基于SAM-2支持视频分割,展现了零样本文本引导视频分割能力。EVF-SAM在多个数据集上表现出色,为计算机视觉领域提供了新的解决方案。
depth-anything-small-hf - 基于大规模无标注数据的先进深度估计模型
Depth AnythingGithubHuggingface图像处理开源项目模型深度估计视觉模型零样本学习
Depth Anything是一款基于DPT架构和DINOv2骨干网络的创新深度估计模型。通过对约6200万张图像的训练,该模型在相对和绝对深度估计领域均实现了突破性成果。它不仅支持零样本深度估计,还能适应多样化的场景图像。研究人员和开发者可以通过简洁的pipeline或灵活的自定义类,轻松实现高精度的图像深度估计。
lang-seg - 语言驱动的零样本语义图像分割模型
CLIPGithubLSeg开源项目计算机视觉语义分割零样本学习
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
sd-webui-segment-anything - 对任何内容进行分段以获得稳定的扩散 WebUI
ControlNetGithubGroundingDINOSAM-HQStable Diffusion WebUIsegment anything开源项目
此扩展结合了Stable Diffusion WebUI、ControlNet扩展,以及Segment Anything和GroundingDINO等高级分割模型,提升了图像修复、语义分割和LoRA/LyCORIS训练集创建功能。支持自动图像抠图及API的全面重构,单张图像处理和自动生成分割掩码更加便捷。最新版本增强了多个分割模型的支持,并优化了CPU和GPU的运行性能。
3D-OVS - 无需标注的开放词汇3D场景分割新方法
3D分割CLIP特征GithubTensoRF开放词汇开源项目弱监督学习
3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。
Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
depth-anything-large-hf - 基于DPT和DINOv2的大规模深度估计模型
Depth AnythingGithubHuggingface人工智能图像处理开源项目模型深度估计计算机视觉
Depth Anything是一个基于DPT架构和DINOv2主干的深度估计模型,通过6200万张图像训练而成。该模型在相对和绝对深度估计方面均达到最先进水平,可用于零样本深度估计等任务。它提供简单的pipeline接口,支持任意尺寸输入图像,并输出高质量深度图。Depth Anything为计算机视觉领域提供了强大的深度感知能力,可应用于多个场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号