Project Icon

efficientdet

EfficientDet目标检测模型的PyTorch实现

本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。

ssd.pytorch - PyTorch实现的高效SSD目标检测器,兼容多数据集与实时可视化
GithubPyTorchSSD开源项目数据集训练评估
该项目实现了基于PyTorch的SSD目标检测器,支持VOC和COCO数据集,并可使用Visdom进行训练过程中的实时损失可视化。页面包含详细的安装、训练和评估指南,并提供预训练模型的使用说明。项目展示了高效性能,并包含未来功能更新计划,帮助开发者快速上手并扩展应用。
mmdetection - MMDetection:基于PyTorch的高效目标检测工具箱
GithubMM-Grounding-DINOMMDetectionOpenMMLabPyTorchRTMDet开源项目
MMDetection是一款专为目标检测、实例分割和全景分割任务设计的工具箱,采用模块化设计,支持多种检测任务,具备高效GPU运算能力。其性能与其他顶级代码库相媲美,且不断保持前沿。结合COCO挑战赛冠军经验,MMDetection提供先进的检测结果,并与MMEngine和MMCV无缝整合,进一步提升研究和应用效果。最新的RTMDet模型在参数-准确率优化及实时实例分割和旋转目标检测上表现出色。
deformable-detr - 使用ResNet-50骨干网络实现的Deformable DETR目标检测模型
COCO 2017Deformable DETRGithubHuggingfaceHungarian算法卷积神经网络开源项目模型物体检测
Deformable DETR模型依托ResNet-50骨干网络,实现了高效的端到端目标检测。通过变形Transformer机制,它能够有效处理并识别图像中的复杂对象。此模型在COCO 2017数据集上经过充分训练,采用目标查询匹配和双重损失优化技术,显著提高了检测精度。适用于高效目标检测场景。
detr - Transformer架构重塑目标检测流程
DETRGithubTransformer开源项目深度学习目标检测计算机视觉
DETR项目运用Transformer架构创新性地改进了目标检测方法。该方法将传统的复杂流程转化为直接的集合预测问题,在COCO数据集上达到42 AP的性能表现,同时计算资源消耗减半。DETR结合全局损失函数与编码器-解码器结构,实现了图像的高效并行处理,大幅提升了目标检测的速度和准确性。项目开源了简洁的实现代码和预训练模型,便于研究人员进行深入探索和实际应用。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
rtdetr_r101vd_coco_o365 - 实时目标检测革新者RT-DETR超越传统性能表现
GithubHuggingfaceRT-DETR开源项目模型模型训练深度学习目标检测计算机视觉
RT-DETR通过混合编码器架构和不确定性最小化查询选择方法实现目标检测任务。在COCO数据集测试中,RT-DETR-R101版本达到56.2% AP精度,T4 GPU上处理速度为74 FPS。模型可通过调整解码器层数实现速度与精度的灵活平衡,为实时目标检测领域提供新的技术方案。
conditional-detr-resnet-50 - 基于条件机制增强ResNet-50的图像检测模型
COCO 2017Conditional DETRGithubHuggingfaceResNet-50对象检测开源项目快速训练收敛模型
Conditional DETR结合了ResNet-50,通过条件交叉注意力机制加速COCO 2017数据集上的训练收敛。在目标检测任务中,该模型解决了训练收敛缓慢的问题,提升了特征提取和目标分类的效率。通过条件空间查询机制,模型能够更高效地定位目标区域,提高了训练速度。在R50和R101骨干网下加速6.7倍,DC5-R50和DC5-R101下加速10倍,并支持PyTorch。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
detr-resnet-50 - DETR 基于Transformer的创新目标检测模型
COCO数据集DETRGithubHuggingfaceResNet-50Transformer开源项目模型目标检测
DETR-ResNet-50是一种创新的目标检测模型,融合Transformer架构与ResNet-50骨干网络。该模型采用端到端训练方法,简化了传统目标检测流程。经COCO 2017数据集训练后,DETR能高效检测和定位图像中的多个物体,在目标检测任务中实现42.0的平均精度(AP)。其简洁设计和卓越性能为计算机视觉领域带来新的可能。
yolov10x - 高效的实时端到端物体检测工具
GithubHuggingfacePyTorchYOLOv10对象检测开源项目模型深度学习计算机视觉
YOLOv10是一个高效的端到端物体检测开源项目,支持在COCO等数据集上进行准确的训练和验证。通过整合PyTorch模型资源,用户可简便地安装和应用。本项目支持从预训练模型进行迁移学习,适合多种计算机视觉应用需求,是追求速度与精度的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号