Project Icon

machine-learning-for-trading

深入解析机器学习在交易策略中的应用,从数据采集到模型实施

《Machine Learning for Trading》第二版系统探索了机器学习在创建、回测及评估交易策略中的作用,涵盖线性回归至深度强化学习等技术,并且重点介绍了金融数据处理和生成对抗网络的使用。全书800页,包含150个实际案例,适合交易和机器学习领域的读者。

ML-NLP - 深入解析机器学习与自然语言处理全面知识库
GithubNLP面试开源项目机器学习深度学习算法工程师自然语言处理
ML-NLP项目提供机器学习与自然语言处理的全面资源,涉及关键理论和现实应用。各章节均配有实战代码,确保算法工程师高效备战面试。项目持续更新,跟上最新行业发展。
d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
machine-learning-list - 机器学习入门与语言模型学习指南
ElicitGithub开源项目机器学习深度学习生产部署语言模型
这个指南旨在帮助员工掌握机器学习,尤其是语言模型的知识。内容涵盖从基础到高级,通过推荐阅读的论文和资源,了解生产部署与长期扩展的重要技术和方法。
Statistical-Learning-Method_Code - 《统计学习方法》算法实现与详细注释
Github代码实现开源项目无监督学习机器学习监督学习统计学习方法
本项目实现了《统计学习方法》一书中的机器学习算法,涵盖监督学习和无监督学习方法。代码采用Python编写,每行均有详细注释,关键部分标注公式出处。项目还提供相关博客链接,旨在帮助学习者深入理解算法原理,适合机器学习入门者参考学习。
Stock-Prediction-Neural-Network-and-Machine-Learning-Examples - Python实现的股票预测神经网络和机器学习模型集
GithubPython开源项目机器学习神经网络股票预测超参数优化
这个开源项目集成了多种用于股票预测的机器学习和神经网络方法,包括遗传算法、梯度提升和K均值聚类等。项目展示了如何使用Keras、PyTorch等主流深度学习框架实现这些模型。其特色在于提供了超参数优化功能,支持多线程处理以提升效率。开发者可以方便地配置和测试不同的超参数,如学习率、批量大小和网络结构。项目还包含了使用实时市场数据进行股票预测的实例代码和详细文档,适合学习和研究股票预测技术。
Machine-Learning-Interviews - 机器学习工程师面试指南,大厂技术面试全攻略
AI EngineeringFAANGGithubMachine Learning大厂面试开源项目面试准备
该指南专为机器学习工程师和应用科学家职位的技术面试设计,特别适用于FAANG等大厂。内容包括算法与数据结构、机器学习编码、系统设计、基础知识和行为面试模块。作者基于自身的面试经验和笔记编写,分享如何有效准备常见面试模块。尽管不同公司的机器学习面试结构有所不同,本指南的模块对其他相关职位也有参考价值,帮助应聘者更好地应对机器学习领域的技术挑战。
machine-learning-interview - 机器学习面试系统设计学习指南
GithubLeetcodeML System DesignMachine Learning开源项目机器学习设计面试准备
本指南为准备机器学习面试的候选人提供全面的学习计划,涵盖YouTube推荐系统设计、LinkedIn信息流排名和广告点击预测等实际案例分析。通过大公司的真实面试问题,覆盖从基本的机器学习概念到深度学习和大数据的进阶主题,帮助求职者在Facebook、Amazon、Apple和Google等顶尖公司中脱颖而出。还提供详细的面试准备清单和成功案例分享,帮助求职者积累实战经验。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
machine-learning-roadmap - 机器学习核心概念与工具指南
GithubMachine Learning开源项目机器学习工具机器学习数学机器学习资源机器学习过程
提供涵盖机器学习问题、流程、工具、数学基础和资源的完整路线图,帮助学习者全面掌握机器学习的核心内容。包含从问题定义到解决方案实施的详细步骤,并推荐相关学习资源,适合机器学习初学者和进阶者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号