Project Icon

machine-learning-for-trading

深入解析机器学习在交易策略中的应用,从数据采集到模型实施

《Machine Learning for Trading》第二版系统探索了机器学习在创建、回测及评估交易策略中的作用,涵盖线性回归至深度强化学习等技术,并且重点介绍了金融数据处理和生成对抗网络的使用。全书800页,包含150个实际案例,适合交易和机器学习领域的读者。

deep-algotrading - 深度学习算法在金融交易中的探索与实践
GithubTensorFlow开源项目深度学习神经网络过拟合金融数据
本项目展示了深度学习技术在金融交易领域的应用。从简单回归到LSTM和策略网络,逐步介绍不同复杂度的算法模型。内容包括TensorFlow使用、深度强化学习概念,以及交易策略的构建与优化。通过代码示例和详细说明,读者可学习如何将深度学习应用于金融数据分析和算法交易。这是一个面向学习者和从业者的教育资源,展示了深度学习在非传统领域的创新应用。
financial-machine-learning - 金融机器学习资源汇总与实践指南
Github开源项目强化学习深度学习算法交易量化交易金融机器学习
这个项目收集了金融机器学习(FinML)领域的精选工具和应用。主要包括Python资源,涵盖深度学习、强化学习和股票预测模型等。此外还提供交易微服务系统和量化机器学习交易等实用内容。项目为金融科技领域的机器学习应用提供了全面的学习和参考资料。
Deep_Learning_Machine_Learning_Stock - 深度学习和机器学习在股票市场预测中的应用
Github人工智能开源项目机器学习深度学习算法股票预测
本项目深入探讨了深度学习和机器学习在股票市场预测中的应用。从数据收集到模型训练,涵盖了算法选择、过拟合处理和性能优化等关键环节。项目融合了技术分析和基本面分析,并探讨了长短期预测策略。这是一个面向研究者和开发者的综合性资源,旨在展示人工智能在金融市场分析中的潜力。
python-machine-learning-book-2nd-edition - Python机器学习与深度学习实用指南
GithubPackt PublishingPython Machine Learning开源项目数据科学机器学习深度学习
本书详细介绍机器学习和深度学习的核心概念,教你使用Python及其主要库(如Scikit-Learn和TensorFlow)进行数据处理、分类、回归和模型优化。书中包含丰富的示例代码和Jupyter笔记本,帮助读者理解复杂的数学理论和实现步骤,是数据科学家和工程师学习和提升机器学习技能的理想选择。
python-machine-learning-book-3rd-edition - Python与机器学习代码实例——从基础到高级应用
GithubPython Machine LearningTensorFlowscikit-learn开源项目数据处理机器学习
《Python Machine Learning》第三版全面覆盖了数据预处理、分类、回归、深度学习和强化学习等机器学习领域的核心概念。书中提供了Scikit-Learn和TensorFlow的代码示例,帮助读者掌握模型评估、超参数优化和集成学习等技术。本书适合初学者和进阶用户,通过代码仓库可以获得丰富的实践经验。出版信息:Packt Publishing, 2019年12月12日,ISBN-13: 978-1789955750。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
awesome-ai-in-finance - 金融市场中的LLMs和深度学习策略和工具的精选列表
AIFinanceGithubLLMsReinforcement LearningTrading开源项目
本项目汇集了最新的人工智能研究在金融领域的应用,包括市场分析和自动化交易策略。内容涵盖LLMs、研究论文、课程书籍以及各种交易策略(如高频交易、投资组合管理、加密货币等),并提供数据源、研究工具和交易系统,帮助用户系统化了解AI在金融中的使用。
practical-machine-learning-with-python - 实际应用中的机器学习与深度学习指南
GithubPractical Machine Learning with PythonPython开源项目数据科学机器学习深度学习
通过结构化的三层方法和实际案例,本书帮助读者掌握机器学习和深度学习技能。内容涵盖scikit-learn、pandas、tensorflow等工具,提供数据处理、特征工程、建模和部署的详细指导,以及多个跨行业的案例研究,支持独立完成端到端的机器学习项目。
FinRL-Trading - 基于机器学习的股票选择与交易策略平台
AI交易FinRLGithub开源项目强化学习投资组合配置股票选择
FinRL-Trading是一个开源的交易策略开发平台,基于FinRL框架构建。该平台整合了监督学习和深度强化学习技术,用于股票选择和投资组合管理。FinRL-Trading提供金融数据处理、技术指标分析、股票筛选、资产配置和回测等功能,并支持部署到在线交易平台进行模拟交易。这个项目为研究人员和开发者提供了一个探索和实现AI驱动交易策略的工具,结合了机器学习、金融科技和算法交易等先进技术,旨在推动智能投资决策的发展。
intelligent-trading-bot - 智能加密货币交易机器人 - 机器学习驱动
Github交易机器人信号服务加密货币开源项目机器学习特征工程
这个开源项目开发了一个智能加密货币交易机器人。它结合机器学习算法和特征工程,实现了从离线模型训练到在线信号生成的完整流程。项目采用模块化设计,包括数据收集、特征工程、模型训练、信号生成和交易执行等组件。它支持多种技术指标和机器学习算法,可进行参数优化和回测。系统能够接入实时市场数据,生成交易信号并执行自动交易。项目还包含一个Telegram频道用于展示实时交易信号,并提供详细的文档和示例配置,方便用户自定义和扩展功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号