Project Icon

RecSysPapers

推荐系统研究进展与行业实践全面汇总

RecSysPapers项目收录827篇推荐系统相关论文,涉及召回、排序、多任务和多模态等领域。项目持续更新业界进展,提供分类和阅读指引,是推荐系统研究和实践的重要参考。收录论文包括阿里巴巴、谷歌、微软等知名公司的最新实践,对推荐系统技术的理解和应用具有参考价值。

Awesome-Recsys - 推荐系统领域顶级会议论文资源库
Github人工智能开源项目推荐系统数据挖掘机器学习深度学习
Awesome-Recsys项目汇集推荐系统领域顶级会议论文,包括SIGIR、RecSys、ICLR等重要会议的最新研究成果。该资源库定期更新,提供论文标题和链接,方便研究人员和从业者快速了解领域进展,获取感兴趣的研究内容。
RSPapers - 关于推荐系统的必读论文的精选清单
Github协同过滤开源项目推荐系统深度学习知识图谱隐私保护
RSPapers提供综合的推荐系统研究资源,覆盖系统教程、综合调研和多种议题,如社交、基于深度学习、冷启动、效率、探索与利说问题等,加上基于知识图谱和评论的最新研究。该资源库定期更新,包含多领域实用案例及隐私保护策略,非常适合研究者与实践者。
MultimodalRecSys - 多模态推荐系统资源与研究进展汇总
Github图神经网络多模态推荐系统开源项目推荐算法深度学习自监督学习
本项目汇总了多模态推荐系统领域的精选资源,包括最新研究论文、开源框架和数据集。内容涵盖通用多模态推荐、基于文本和图像的推荐等方向,并提供详细的文献综述和技术分类。项目重点关注代码实现,为研究人员和开发者提供了深入了解该领域的重要参考。资源列表持续更新,反映多模态推荐系统的最新进展。
Awesome-LLM4RS-Papers - 聚焦于大型语言模型在推荐系统中的应用研究的论文集
AI绘图GithubLLMRecPapers大型语言模型开源项目推荐系统
Awesome-LLM4RS-Papers是一套精选论文集,聚焦于大型语言模型在推荐系统中的应用研究。本集合包含自2023至2024年期间发布的期刊文章和会议论文,覆盖了隐私保护、个性化方案、效率提升等诸多创新领域。该项目为研究人员和技术开发者提供关于如何利用大型语言模型增强推荐系统的全面资料。
Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising - 搜索推荐广告领域深度学习论文精选集
Github嵌入技术广告系统开源项目推荐系统搜索引擎深度学习
该项目汇集了搜索、推荐和广告领域的前沿深度学习论文,收录了100多篇顶级会议论文。内容涵盖嵌入、匹配、排序(如CTR/CVR预测)、后排序、迁移学习和强化学习等关键技术,包括DSSM、YouTube DNN等经典模型。收录了Google、Facebook、Alibaba等顶级科技公司的研究成果,为从业者提供全面的学习资源和研究参考。通过这些精选论文,读者可深入了解行业前沿技术和实践应用。
LLM4Rec-Awesome-Papers - 大语言模型在推荐系统中的最新应用及研究进展综述
GithubLLM人工智能大语言模型开源项目推荐系统论文综述
该项目汇总了大语言模型在推荐系统中应用的优秀论文和资源。内容涵盖无调整和有监督微调两类方法,包括ChatGPT、GPT、LLaMA等模型在推荐领域的最新探索。项目还提供相关调查、教程和数据集信息,为研究人员提供全面参考。持续更新的内容反映了这一快速发展的研究热点,展现大语言模型在推荐系统中的潜力。
awesome-recommend-system-pretraining-papers - 推荐系统预训练及大型语言模型论文资源
GithubRecommend System大语言模型开源项目数据集用户表示预训练预训练模型
此资源汇总了预训练推荐系统和大型语言模型相关的论文,涵盖用户表示预训练、序列推荐、图预训练等子领域,并提供丰富的数据集和代码链接。研究人员可以通过该列表了解如何利用预训练和大型语言模型提升推荐系统性能,获得最新研究成果和实用工具。
Awesome-LLM-for-RecSys - 关于大型语言模型 (LLM) 相关推荐系统主题的论文和资源的集合
ACM Transactions on Information SystemsChatGPTGithubLLM开源项目推荐系统论文更新
Awesome-LLM-for-RecSys聚焦大语言模型与推荐系统的交汇点,提供领先的研究成果与资源。该项目持续跟踪最新动态,举行定期论文评述,旨在为研究者和开发者深化对LLM在推荐系统中应用的理解提供支持。
Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
must-read-papers-for-ml - 精选机器学习和数据科学必读论文资源集
Github开源项目数据科学机器学习深度学习神经网络论文集
本项目汇集了数据科学、机器学习和深度学习领域的重要论文和综述文章。涵盖数据预处理、深度学习技术、推荐系统和计算机视觉等多个主题。资源按重要性分类,并提供链接,方便读者学习和追踪最新进展。项目持续更新,欢迎贡献新的学术资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号