Project Icon

RecSysPapers

推荐系统研究进展与行业实践全面汇总

RecSysPapers项目收录827篇推荐系统相关论文,涉及召回、排序、多任务和多模态等领域。项目持续更新业界进展,提供分类和阅读指引,是推荐系统研究和实践的重要参考。收录论文包括阿里巴巴、谷歌、微软等知名公司的最新实践,对推荐系统技术的理解和应用具有参考价值。

recommender_system_with_Python - Python推荐系统的实现与应用实例
GithubPython协同过滤开源项目推荐系统深度学习矩阵分解
详细讲解使用Python实现推荐系统的方法与案例,涵盖内容过滤、协作过滤和矩阵分解等基本理论,并通过实际项目展示这些技术的应用。此外,还介绍了基于Naver新闻数据的推荐系统、使用Keras和深度学习技术的实例,以及利用LangChain和GPT-4o提升推荐系统解释性的案例。更多代码及详细说明请参阅相关博客文章。
awesome-pretrained-models-for-information-retrieval - 信息检索领域预训练模型研究综述与最新进展
Github信息检索开源项目搜索引擎深度学习神经网络预训练模型
该项目汇集了信息检索领域预训练模型相关的重要论文资源。内容涵盖第一阶段检索、重排序、联合学习等核心技术,以及大语言模型应用和多模态检索等前沿主题。项目提供了全面的文献综述,有助于研究人员和从业者了解该领域的最新进展和发展方向。资源列表系统梳理了稀疏检索、密集检索等关键技术,为相关研究提供了宝贵的参考。
Annotated-ML-Papers - Annotated-ML-Papers 机器学习与深度学习论文注释综述
Annotated-ML-PapersDLGithubML博客开源项目论文注释
此项目提供对机器学习和深度学习论文的详细注释和总结,帮助读者深入理解最新研究进展。博客内容定期更新,提供最新的研究信息。加入邮件列表,可第一时间获取项目更新。
RecBole - 基于Python和PyTorch的推荐系统框架,支持91种算法和43个数据集
GithubPyTorchPythonRecBoleRecBole2.0开源项目推荐系统
RecBole是一个基于Python和PyTorch的推荐系统框架,旨在高效地复现和开发推荐算法。该框架包含91种算法,涵盖通用推荐、序列推荐、情境推荐和知识推荐四大类。RecBole支持43个基准数据集,并提供GPU加速和标准评估协议以满足研究需求。最新版本增加了扩展包,提升用户体验,并支持多GPU和混合精度训练。
LLMSys-PaperList - 大语言模型系统论文精选 前沿研究与技术进展
GithubLLM开源项目模型推理模型训练深度学习系统优化
该项目汇集大语言模型系统相关的学术论文、文章、教程和项目,涵盖预训练、推理服务、微调系统等多个方面。包括Megatron-LM、FlashAttention、vLLM等重要工作,还涉及LLM用于系统优化的研究。这一精选列表有助于研究者和开发者及时了解大语言模型系统领域的最新进展。
ABigSurvey - 自然语言处理和机器学习综述论文汇总与分析
GithubMLNLPcategorizationstatisticssurvey papers开源项目
本文汇总了数百篇关于自然语言处理和机器学习的综述论文,并对其进行分类和数量统计,涵盖对话系统、信息检索、大型语言模型等热门主题。文章展示了1063篇论文的链接,并根据发表年份绘制了统计图表,同时生成了展示热门话题的词云。
awesome-automl-papers - 综合自动化机器学习研究资源库
AutoMLGithub人工智能开源项目机器学习算法优化自动化
本项目汇集了自动化机器学习(AutoML)领域的关键资源,包括论文、文章、教程和开源项目。内容涵盖自动数据清理、特征工程、超参数优化、元学习和神经架构搜索等核心技术。资源库持续更新,助力研究人员和从业者跟踪领域前沿。此外,项目提供了主流AutoML系统的对比分析,为读者呈现全面的领域概貌。
RecStudio - 基于PyTorch的模块化推荐系统库 支持多任务多模型
GithubPyTorchRecStudio开源项目推荐系统机器学习深度学习
RecStudio是一个基于PyTorch的模块化推荐系统库。它支持通用、序列、知识、特征和社交等多种推荐任务。该框架提供灵活的模型结构、统一的数据处理、GPU加速、简洁的模型分类和多种负采样方法。RecStudio为推荐系统研究和开发提供了高效便捷的工具。
RecAI - 衔接大语言模型和推荐系统
AI代理GithubLLM4RecRecAI开源项目推荐系统深度学习
RecAI 项目旨在通过整合大规模语言模型 (LLMs) 开发更先进的推荐系统,主要提升交互性、可解释性和控制性。项目研究了多种技术,包括推荐 AI 代理、个性化提示、语言模型微调、模型解释器和评价系统。目标是通过全面的方法,解决 LLM4Rec 在实际应用中的需求,打造更加智能和可信赖的推荐系统。
LibRecommender - 推荐系统开源库 集成多种算法与完整工作流
GithubLibRecommender协同过滤开源项目推荐系统机器学习深度学习
LibRecommender是一个专注于端到端推荐流程的开源系统库。它实现了FM、DIN、LightGCN等多种流行算法,支持协同过滤和基于内容的混合推荐。该库具有低内存占用、支持冷启动和动态特征等优势,提供从数据处理到模型训练、评估和部署的完整工作流。其API设计统一友好,适用于多种推荐场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号