Project Icon

Koopa

高效预测非平稳时间序列的轻量级模型

Koopa是一个基于Koopman理论的轻量级模型,用于高效预测非平稳时间序列。它实现了最先进的性能,同时减少了77%的训练时间和76%的内存使用。Koopa采用端到端预测训练,提高了对非线性时间序列演化的建模能力。项目提供完整代码实现、实验脚本和数据集,支持滚动预测,并能适应持续的分布偏移。

KoopmanLab - Koopman神经算子 高效求解非线性偏微分方程
GithubKoopmanLabKoopman神经算子偏微分方程开源项目机器学习物理方程求解
KoopmanLab是一个开源的Koopman神经算子包,基于PyTorch开发。该项目结合机器学习和动力系统理论,提供了一种无网格方法来求解非线性偏微分方程。KoopmanLab实现了多种模型,如KNO和ViT-KNO,并配备完整的数据处理、训练和测试工具。它可应用于Navier-Stokes方程和浅水方程等物理模拟场景,为研究人员提供了高效灵活的计算框架。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
mamba - 线性时间序列建模的突破性架构
GithubMamba序列建模开源项目深度学习状态空间模型线性时间复杂度
Mamba是一种创新的状态空间模型架构,专为信息密集型任务如语言建模而设计。基于结构化状态空间模型,Mamba采用选择性状态空间实现线性时间复杂度的序列建模,突破了传统亚二次方模型的限制。该项目提供多个预训练模型,支持多种硬件平台的推理和评估,展现了优越的性能和灵活性。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
prophet - 开源时间序列预测库Prophet
FacebookGithubProphet开源软件开源项目时间序列预测机器学习
Prophet是Facebook开发的开源时间序列预测库。基于加法模型,它能处理非线性趋势、多重季节性和节假日效应。适用于具有强季节性且拥有较长历史数据的时间序列,对缺失数据和趋势变化有较强适应性。Prophet支持Python和R语言,API简洁易用,可快速生成高质量预测。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
microprediction - 多功能时间序列预测和优化开源工具集
Githubmicroprediction开源项目时间序列预测算法优化金融预测
microprediction是一个综合性开源项目集,专注于时间序列预测和优化。该项目提供多个Python库,包括humpDay、timemachines和precise,分别用于无导数优化器评估、增量时间序列预测和协方差估计。这些工具能帮助提高预测精度和模型性能。项目还包含丰富的基准测试和评估工具,便于比较不同方法的效果。适用于数据科学研究和实际应用场景。
chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
lag-llama - 首个开源时间序列预测基础模型,实现零样本及微调能力
GithubLag-Llama基础模型开源模型开源项目时间序列预测概率预测
Lag-Llama是开源的时间序列预测基础模型,支持任意频率和预测长度的零样本预测及模型微调。项目提供预训练和微调脚本,可复现论文实验。模型具备强大的零样本能力,微调后性能更佳。使用时可通过调整上下文长度和学习率等参数优化性能。作为概率预测模型,Lag-Llama输出每个时间步的概率分布。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号