Project Icon

res2next50.in1k

基于Res2Net架构的高效多尺度图像分类模型

res2next50.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,参数量为2470万,计算复杂度为4.2 GMACs。它不仅可用于图像分类,还支持特征图提取和图像嵌入等任务。res2next50.in1k在性能和灵活性方面表现出色,适用于广泛的计算机视觉应用。研究人员可通过timm库便捷地使用和评估此模型。

imageinwords - 致力于生成超详细图像描述的研究项目
GithubImageInWords图像描述开源项目数据集机器学习计算机视觉
ImageInWords 是一个致力于生成超详细图像描述的研究项目。该项目提供基准评估数据集,可通过 Hugging Face 访问。它集成了计算机视觉和自然语言处理技术,为研究人员和开发者提供数据集、可视化工具和探索接口。这项研究旨在推进图像理解和描述生成领域的发展。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
VNext - 高级视频实例分割框架,支持在线和离线模式
GithubIDOLInstMoveSeqFormerVNext开源项目视频实例分割
VNext是一个基于Detectron2的视频实例识别框架,提供先进的在线和离线实例分割算法及对象中心的视频分割运动模型。用户可参考官方教程进行安装、训练和评估。最新算法InstMove、IDOL和SeqFormer在国际会议上获得认可并取得优异成绩。
Vision-RWKV - 基于RWKV架构的高效视觉感知模型
GithubVision-RWKV图像处理开源项目深度学习神经网络计算机视觉
Vision-RWKV是一种基于RWKV架构的视觉感知模型。该模型可高效处理高分辨率图像,具有全局感受野,并通过大规模数据集预训练实现良好扩展性。在图像分类任务中,Vision-RWKV性能超越ViT模型;在密集预测任务中,它以更低计算量和更快速度胜过基于窗口的ViT,并与全局注意力ViT相当。Vision-RWKV展现出成为多种视觉任务中ViT替代方案的潜力。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
BiRefNet - 高分辨率图像分割的双边参考网络
BiRefNetGithubHugging Face双边参考图像分割开源项目高分辨率
BiRefNet是一个专注于高分辨率图像分割的创新网络。该项目在DIS、COD和HRSOD等多个高分辨率任务中取得了领先成果。BiRefNet采用双边参考机制提升分割精度,支持HuggingFace一行代码加载。项目开源了完整代码实现、预训练模型,并提供在线演示。这一工作为高分辨率图像分割研究带来了新的思路。
3D-ResNets-PyTorch - 用于动作识别的 3D ResNets
3D ResNetsAction RecognitionGithubPyTorchSpatiotemporal 3D CNNs开源项目预训练模型
该项目提供基于PyTorch的3D ResNet代码,适用于动作识别,支持Kinetics和Moments in Time等数据集。项目包含训练、微调和测试脚本,并提供预训练模型,支持最新的PyTorch版本和分布式训练。用户可使用详细脚本进行数据准备和模型评估,适合研究与应用。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号