Project Icon

swin_tiny_patch4_window7_224.ms_in1k

Swin Transformer: 基于移位窗口的层级视觉模型

swin_tiny_patch4_window7_224.ms_in1k是一个基于Swin Transformer架构的图像分类模型,在ImageNet-1k数据集上预训练。该模型包含2830万参数,支持224x224像素输入,可用于图像分类和特征提取。它采用分层视觉Transformer结构和移位窗口技术,提高了效率和性能。研究者可通过timm库便捷地使用此模型进行推理或进一步训练,适用于各种计算机视觉任务。

ms-swift - 支持300+模型训练和轻量级微调的高效框架
GithubLLMModelScopeSWIFT多模态模型开源项目轻量级训练
SWIFT是一款高效框架,支持超过300个大语言模型和50多个多模态大模型的训练、推理、评估和部署。它集成了NEFTune、LoRA+和LLaMA-PRO等先进技术,适用于研究和生产环境。框架还提供了易用的Gradio web-ui界面和详细文档,非常适合初学者和资深开发者使用。最新版本增加了对多种前沿模型和加速算法的支持,适用于广泛的应用场景。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
CAT - 创新图像恢复模型 强化远程特征建模
GithubTransformer卷积神经网络图像修复开源项目自注意力机制长程依赖
CAT是一种创新的图像恢复模型,采用矩形窗口自注意力机制扩大特征提取范围。模型通过水平和垂直矩形窗口并行聚合特征,实现窗口间交互。结合CNN的局部特性,CAT在全局-局部特征耦合方面表现出色。实验证实该方法在多种图像恢复任务中超越了现有技术水平。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
SiT - 可扩展插值变换器 融合流模型和扩散模型的图像生成新方法
GithubSiT图像生成开源项目机器学习深度学习生成模型
SiT项目开发了可扩展插值变换器,这是一种基于扩散变换器的生成模型。通过灵活连接分布,SiT实现了对动态传输生成模型的模块化研究。在条件ImageNet 256x256基准测试中,SiT以相同的骨架和参数超越了DiT,并通过优化扩散系数获得了2.06的FID-50K分数。项目提供PyTorch实现、预训练模型和训练脚本,推动了图像生成技术的进步。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号