Project Icon

algebraic-nnhw

创新FFIP算法驱动的机器学习硬件加速器

项目开发的机器学习硬件加速器架构采用了创新的Free-pipeline Fast Inner Product (FFIP)算法。这种设计只需要传统方法一半的乘法器单元,就能实现相同的性能。该架构适用范围广泛,涵盖全连接、卷积、循环和注意力/transformer等多种机器学习模型层。它可以轻松集成到现有的定点系统阵列ML加速器中,显著提升吞吐量和计算效率。项目不仅提供了完整的RTL实现,还包括配套的编译器和测试环境,为机器学习硬件加速研究领域贡献了有价值的资源。

本仓库包含了机器学习硬件架构的源代码,通过执行替代的内积算法,这些算法用近一半的廉价低位宽加法替代乘法运算,同时仍然产生与传统内积相同的输出,从而只需要近一半数量的乘法器单元就能实现相同的性能。这提高了机器学习加速器的理论吞吐量和计算效率限制。详细内容请参见以下期刊论文:

T. E. Pogue 和 N. Nicolici,"面向深度神经网络加速器的快速内积算法和架构",发表于IEEE计算机汇刊,第73卷,第2期,第495-509页,2024年2月,doi: 10.1109/TC.2023.3334140。

论文链接:https://ieeexplore.ieee.org/document/10323219

开放获取版本:https://arxiv.org/abs/2311.12224

摘要:我们提出了一种名为自由流水线快速内积(FFIP)的新算法及其硬件架构,对Winograd在1968年提出的一种未被充分探索的快速内积算法(FIP)进行了改进。与用于卷积层的无关的Winograd最小滤波算法不同,FIP适用于所有可以主要分解为矩阵乘法的机器学习模型层,包括全连接层、卷积层、循环层和注意力/transformer层。我们首次在机器学习加速器中实现了FIP,然后提出了我们的FFIP算法和通用架构,它们本质上提高了FIP的时钟频率,从而在相似的硬件成本下提高了吞吐量。最后,我们为FIP和FFIP算法和架构贡献了特定于机器学习的优化。我们展示了FFIP可以无缝地整合到传统的定点系统阵列机器学习加速器中,使用一半数量的乘累加(MAC)单元就能达到相同的吞吐量,或者可以将能够适应固定硬件预算设备的最大系统阵列大小翻倍。我们针对8位到16位定点输入的非稀疏机器学习模型的FFIP实现,在相同类型的计算平台上实现了比最佳同类解决方案更高的吞吐量和计算效率。

以下图表展示了本源代码中实现的机器学习加速器系统概览:

下图中(b)和(c)所示的FIP和FFIP系统阵列/MXU处理单元(PE)实现了FIP和FFIP内积算法,每个单独提供的有效计算能力相当于(a)中所示的两个基线PE的组合,这两个基线PE实现了之前系统阵列机器学习加速器中的基线内积:

以下是MXU/系统阵列的图表,展示了PE之间的连接方式:

源代码组织如下:

  • compiler
    • 用于将Python模型描述解析为加速器指令的编译器,使其能够加速模型。这部分还包括与PCIe驱动程序接口的代码,用于启动加速器上的模型执行、读取结果和性能计数器,以及测试结果的正确性。
  • rtl
    • 可综合的SystemVerilog RTL。
  • sim
    • 用于设置仿真环境进行测试的脚本。
  • tests
    • 基于UVM的测试台源代码,用于在仿真中使用Cocotb验证加速器。
  • utils
    • 作者为该项目创建的额外Python包和脚本,用于通用开发实用程序和辅助工具。

文件rtl/top/define.svh和rtl/top/pkg.sv包含了许多可配置参数,如define.svh中的FIP_METHOD定义系统阵列类型(基线、FIP或FFIP),SZI和SZJ定义系统阵列高度/宽度,以及LAYERIO_WIDTH/WEIGHT_WIDTH定义输入位宽。

目录rtl/arith包括mxu.sv和mac_array.sv,其中包含基线、FIP和FFIP系统阵列架构的RTL(取决于参数FIP_METHOD的值)。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号