Project Icon

torch-imle

将离散优化算法融入深度学习的创新方法

torch-imle是一个PyTorch库,通过I-MLE梯度估计器将离散优化算法融入深度学习。它使用创新的采样和分布方法,实现了离散优化问题在深度学习中的应用,如最短路径学习。该库采用Perturb-and-MAP方法和新颖的噪声扰动来近似采样复杂分布,并提供替代经验分布。torch-imle通过梯度下降学习最优路径权重,为深度学习中的离散优化问题提供强大的解决方案。

doremi - 创新算法提升语言模型训练效率
DoReMiGithub代理模型分布鲁棒优化开源项目数据混合优化语言模型
DoReMi是一种优化语言模型数据集混合的算法。它通过分布鲁棒优化调整数据混合,适应不同目标分布。算法训练小型代理模型动态调整各领域数据权重,并利用预训练参考模型避免对高熵领域过于悲观。DoReMi显著提高大型模型训练效率,如280M代理模型可使8B参数模型达到基线性能的速度提高2.6倍。项目提供PyTorch实现,包含快速可恢复的数据加载器和下游评估工具。
Transfer-Learning-Library - 高效且易用的迁移学习库,支持多种算法和任务
APIGithubPyTorchTLlibTransfer Learning开源项目机器学习
Transfer Learning Library (TLlib) 是一个开源的迁移学习库,基于PyTorch设计,具备高性能和易用性。该库支持多种方法,如域对齐、域转换和半监督学习,适用于分类、回归、目标检测、分割和关键点检测等任务。提供丰富的示例代码和详细文档,并支持pip安装。这是研发新算法或应用现有算法的理想工具,适用于研究和工程实践。
torchquad - 基于GPU加速的开源数值积分框架
GPUGithubPyTorchtorchquad开源项目数值积分机器学习
torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
imodelsX - 多功能文本模型分析与优化库
GithubimodelsX可解释性开源项目文本模型机器学习自然语言处理
imodelsX是一个与Scikit-learn兼容的Python库,专注于文本模型和数据的解释、预测和优化。该库集成了多种可解释的建模技术,包括Tree-Prompt、iPrompt和Aug-Linear等。imodelsX还提供LLM封装器和数据集封装器等实用工具,简化文本数据处理流程。通过支持多种解释方法,imodelsX能够生成自然语言解释,并为用户提供易于实现的基线模型。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
trlx - 分布式微调大型语言模型的强化学习框架,支持奖励函数与高效并行
GithubHugging FaceILQLNVIDIA NeMoPPOtrlX开源项目
一个专注于强化学习微调大型语言模型的分布式训练框架。支持使用奖励函数或已标注数据集进行训练,兼容🤗Hugging Face和NVIDIA NeMo模型,可扩展到20B参数以上。实现了PPO和ILQL等多种RL算法,提供详细文档和丰富示例,支持分布式训练和超参数搜索。适用于各种应用场景,通过高效并行技术提升训练效率。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
torchdyn - PyTorch数值深度学习库,支持微分方程和数值方法
GithubPyTorchTorchdyn开源项目微分方程数值方法深度学习
Torchdyn是一个专注于数值深度学习的PyTorch库,涵盖微分方程、积分变换和数值方法。它提供便捷的工具和层,用于构建神经微分方程和复合模型,并支持GPU加速和多种数值方法。该库与PyTorch和pytorch-lightning高度集成,使得用户能够快速上手,推进研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号