Project Icon

RecStudio

基于PyTorch的模块化推荐系统库 支持多任务多模型

RecStudio是一个基于PyTorch的模块化推荐系统库。它支持通用、序列、知识、特征和社交等多种推荐任务。该框架提供灵活的模型结构、统一的数据处理、GPU加速、简洁的模型分类和多种负采样方法。RecStudio为推荐系统研究和开发提供了高效便捷的工具。

SASRec.pytorch - 基于PyTorch的SASRec模型实现
GithubPyTorchSASRec序列推荐开源项目推荐系统自注意力机制
SASRec.pytorch项目提供了自注意力序列推荐模型的PyTorch实现。相比原始TensorFlow版本,该项目优化了训练和推理流程,修复了正位置嵌入等问题。代码包含模型训练、评估和推理示例,并在MovieLens-1M数据集上展示了NDCG@10和HR@10指标的性能。项目适用于需要在PyTorch环境中研究或应用SASRec模型的人员,为推荐系统领域提供了有价值的开源资源。
RePlay - 全周期推荐系统开发与评估框架
GithubRePlay开源项目推荐系统数据预处理模型评估超参数优化
RePlay是一个覆盖推荐系统全生命周期的开发评估框架。它集成了数据预处理、模型构建、参数优化、性能评估和模型集成等功能。该框架支持CPU、GPU等多种硬件,并可与PySpark结合实现分布式计算。RePlay能帮助开发者顺利将推荐系统从离线实验转到在线生产环境,提升系统的可扩展性和适应性。
RecBole-GNN - 图神经网络推荐算法开源库
GithubPyTorchRecBole-GNN图神经网络开源库开源项目推荐系统
RecBole-GNN是一个开源的图神经网络推荐算法库,基于PyTorch和RecBole构建。该库专注于复现和开发GNN推荐算法,涵盖通用、序列和社交推荐三大类别。它提供统一API、高效图处理模块和丰富的算法库,支持多种前沿GNN推荐模型。RecBole-GNN还提供详细的性能对比,为研究人员提供便捷的GNN推荐算法开发和评估平台。
recommenders - 利用TensorFlow构建推荐系统模型的库
GithubKerasTensorFlow Recommenders开源项目推荐系统数据准备模型训练
TensorFlow Recommenders 是一款利用TensorFlow构建推荐系统模型的库。它涵盖了数据准备、模型构建、训练、评估和部署的完整工作流程,基于Keras,旨在为用户提供易学且灵活的体验,能够支持构建复杂模型。只需确保安装TensorFlow 2.x,并使用pip安装即可开始使用。详细的文档和教程能够帮助用户快速入门。
RLMRec - 融合大语言模型的推荐系统表示学习框架
GithubRLMRec协同过滤大语言模型开源项目推荐系统表示学习
RLMRec是一个模型无关的推荐系统框架,利用大语言模型增强表示学习。该框架整合表示学习与大语言模型,深入捕捉用户行为和偏好的语义特征。RLMRec引入辅助文本信息,构建大语言模型支持的用户和物品画像,并通过跨视图对齐方法整合语义空间和协同关系信号。在多个公开数据集的评估中,RLMRec展现出显著的性能提升。
LibRecommender - 推荐系统开源库 集成多种算法与完整工作流
GithubLibRecommender协同过滤开源项目推荐系统机器学习深度学习
LibRecommender是一个专注于端到端推荐流程的开源系统库。它实现了FM、DIN、LightGCN等多种流行算法,支持协同过滤和基于内容的混合推荐。该库具有低内存占用、支持冷启动和动态特征等优势,提供从数据处理到模型训练、评估和部署的完整工作流。其API设计统一友好,适用于多种推荐场景。
Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
MultimodalRecSys - 多模态推荐系统资源与研究进展汇总
Github图神经网络多模态推荐系统开源项目推荐算法深度学习自监督学习
本项目汇总了多模态推荐系统领域的精选资源,包括最新研究论文、开源框架和数据集。内容涵盖通用多模态推荐、基于文本和图像的推荐等方向,并提供详细的文献综述和技术分类。项目重点关注代码实现,为研究人员和开发者提供了深入了解该领域的重要参考。资源列表持续更新,反映多模态推荐系统的最新进展。
daisyRec - 开源推荐系统评估和基准测试框架
GithubPython工具包协同过滤基准测试开源项目推荐系统深度学习
daisyRec是一个支持多维度公平比较的Top-N推荐任务基准测试框架。该开源工具整合了传统和深度学习推荐算法,支持CUDA加速和多个公开数据集。通过提供GUI命令生成器和严格的评估标准,daisyRec致力于推动推荐系统研究的可复现性和公平比较。
recommenders - 从概念到部署推动推荐系统的发展的完整教程
GithubRecommenders内容过滤协同过滤开源项目推荐系统机器学习
Recommenders项目支持开发者和技术爱好者从概念到部署推动推荐系统的发展。项目提供完整的教程,包括数据准备、模型建立、评估和优化,通过丰富的Jupyter笔记本示例展示各种推荐算法的实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号