Project Icon

VNext

高级视频实例分割框架,支持在线和离线模式

VNext是一个基于Detectron2的视频实例识别框架,提供先进的在线和离线实例分割算法及对象中心的视频分割运动模型。用户可参考官方教程进行安装、训练和评估。最新算法InstMove、IDOL和SeqFormer在国际会议上获得认可并取得优异成绩。

ControlNeXt - 高效可控生成框架 实现图像视频多样化控制
ControlNeXtGithub人工智能可控生成图像生成开源项目视频生成
ControlNeXt是一个创新的可控生成框架,支持图像和视频的多样化控制。该项目大幅减少可训练参数,提高收敛速度和效率。基于Stable Diffusion等先进模型,ControlNeXt实现了包括人体姿态控制在内的多种生成任务。此外,它还可与LoRA等技术结合,提供更灵活、稳定的生成体验。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
MiVOS - 交互式视频对象分割方法与差异感知融合
DAVISGithubMiVOSPyTorch交互式分割开源项目视频对象分割
该项目介绍了一种模块化的交互视频对象分割方法,通过交互生成对象掩码并采用差异感知的融合模块进行处理。该方法在DAVIS和YouTube等基准测试中表现出色,并支持用户交互的GUI工具,简化了视频对象标注过程。项目还集成了多个预训练模型,并提供了快速下载和数据生成脚本,为研究人员和开发者提供了便捷高效的解决方案。
detectron2 - Facebook开源的高性能目标检测和图像分割框架
Detectron2Github图像分割开源项目深度学习目标检测计算机视觉
Detectron2是Facebook AI Research开发的开源计算机视觉库,提供先进的目标检测和图像分割算法。它支持全景分割、Densepose和级联R-CNN等功能,可用于研究项目和生产应用。该库训练速度快,支持模型导出,并提供大量预训练模型。Detectron2为研究人员和开发者提供了强大而灵活的工具,推动计算机视觉技术的发展和应用。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
InternVideo - 视频基础模型助力多模态理解进展
GithubInternVideo多模态理解开源项目模型更新视频基础模型视频文本数据集
InternVideo项目致力于开发通用视频基础模型,提升多模态视频理解能力。项目包含InternVideo和InternVideo2两个主要版本,以及大规模视频-文本数据集InternVid。InternVideo2采用生成式和判别式学习方法,在多模态视频理解任务中表现突出。项目不断更新,提供多种规模的模型和丰富的视频注释数据,为研究和开发提供有力支持。
next-video - Next.js应用的视频优化和集成解决方案
CDNGithubNext.jsReact开源项目视频优化视频组件
next-video是一款为Next.js应用设计的React组件,提供全面的视频处理解决方案。它扩展了标准<video>元素,支持智能存储、自动优化、自定义播放器界面、海报生成和预览等特性。该组件还具备跨浏览器兼容性、内置视频分析工具和AI驱动的自动字幕生成功能,大大简化了在Next.js项目中实现专业级高性能视频集成的过程。通过next-video,开发者可以轻松为其Next.js应用添加强大的视频功能。
STCN - 改进内存覆盖的高效视频对象分割框架
GithubNeurIPSSTCN开源项目神经网络空间时间对应视频目标分割
STCN是一个创新的视频对象分割框架,通过改进内存覆盖重新构建时空网络。该方法在多个基准测试中达到了最先进水平,同时保持20+ FPS的高效运行。STCN采用简洁的网络结构,建立图像间亲和力,并使用L2相似度替代点积,显著提升内存利用率。这种方法在准确性和效率间实现了理想平衡,为视频对象分割研究带来新思路。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
XMem - 长时视频对象分割的解决方案,基于人类多尺度记忆模型
Atkinson-Shiffrin记忆模型ECCVGPU内存优化GithubXMem开源项目视频对象分割
XMem项目采用Atkinson-Shiffrin记忆模型,提供了一种全新的视频对象分割(VOS)方法。通过结合不同时间尺度的记忆单元,有效避免在处理长时视频时出现的计算和GPU内存问题。XMem可处理超过10000帧的视频,在有限GPU资源下仍保持高效,处理速度达每秒20帧,并附带简化版GUI。项目中还提供了详细的训练和推理指南,适用于实验和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号