Project Icon

OfflineRL-Kit

高效易用的PyTorch离线强化学习库

OfflineRL-Kit是基于PyTorch的离线强化学习库,提供清晰的代码结构和最新算法实现。支持CQL、TD3+BC等多种算法,具备高扩展性和强大的日志系统。该库还支持并行调优,便于研究人员进行实验。相比其他离线强化学习库,OfflineRL-Kit在性能和易用性方面都有显著优势,是离线强化学习研究的有力工具。

d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
awesome-offline-rl - 离线强化学习研究论文和开源资源集锦
Githuboffline RL人工智能开源项目强化学习机器学习离线强化学习
该项目汇集了离线强化学习(Offline RL)领域的研究论文、综述文章、开源实现等资源。内容涵盖离线RL的理论方法、基准测试、应用案例及相关主题。项目由康奈尔大学研究人员维护,为学术界和产业界提供离线RL的最新进展和重要文献。
rl - 开源强化学习库TorchRL
TorchRL是专为PyTorch设计的开源强化学习库,提供高效的研究性能。它具备完整Python接口、模块化、定制化及强大扩展性,配备详尽文档和测试,确保用户快速上手且使用可靠。此外,TorchRL包括多种可复用功能,适用于成本、回报处理和数据管理,是开展强化学习研究与应用的理想工具。
scope-rl - 离线强化学习与策略评估的开源Python库
GithubPython库SCOPE-RL开源项目离线强化学习离线策略评估策略选择
SCOPE-RL是一个用于离线强化学习的开源Python库。它实现了从数据生成到策略学习、评估和选择的完整流程。该库提供了多种离线策略评估(OPE)估计器和策略选择(OPS)方法,兼容OpenAI Gym和Gymnasium接口。SCOPE-RL还包含RTBGym和RecGym环境,用于模拟实际应用场景。它简化了离线强化学习的研究和实践过程,提高了实验的透明度和可靠性。
HandyRL - 高效实用的分布式强化学习框架
GithubHandyRLPyTorch分布式训练开源项目强化学习离线策略修正
HandyRL是一个基于Python和PyTorch的分布式强化学习框架,已在Kaggle竞赛中取得优异成绩。它采用离线策略修正的策略梯度算法和学习者-工作者架构,支持自定义环境和大规模训练。HandyRL的高并行能力和实用性使其在竞争性游戏AI开发中表现出色,能够快速训练出强大的AI模型。
openrl - 综合性强化学习平台,支持多任务训练
GithubOpenRLPyTorch多智能体开源项目强化学习自然语言处理
OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
pytorch-rl - Pytorch中的深度强化学习算法实现
GithubOpenAI GymPytorch开源项目强化学习机器人任务深度学习
pytorch-rl项目在Pytorch中实现了多种深度强化学习算法,适用于连续动作空间。用户可以在CPU或GPU上高效训练这些算法,并与OpenAI Gym无缝集成。支持的算法包括DQN、DDPG、PPO等,涵盖环境建模和参数空间噪声探索等功能。
DRLib - 简洁高效的深度强化学习算法集成库
DRLibGithubHERPER开源项目机器人操作深度强化学习
DRLib是一个集成主流off-policy强化学习算法的开源库,支持HER和PER技术。基于OpenAI Spinning Up开发,提供TensorFlow和PyTorch两个版本。相比原版更易用和调试,适合机器人相关任务研究。提供详细环境配置教程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号