Project Icon

pytorch-ts

概率时间序列预测开源框架

PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。

chronos-t5-small - T5架构预训练时间序列模型 实现概率性多轨迹预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-t5-small是一个基于T5架构的预训练时间序列预测模型,参数量为4600万。该模型将时间序列转换为token序列进行训练,可生成多个未来轨迹的概率性预测。模型训练数据包括公开数据集和高斯过程生成的合成数据。它支持GPU加速和bfloat16精度,适用于多种时间序列预测场景。与原始T5模型相比,Chronos-t5-small采用更小的词汇表(4096个token),提高了计算效率。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
benchmark - 开源基准测试集评估PyTorch性能
GithubPyTorch基准测试安装开源项目性能评估模型
PyTorch Benchmarks是评估PyTorch性能的开源基准测试集。它提供修改过的流行工作负载、标准化API和多后端支持。项目包含安装指南、多种基准测试方法和低噪声环境配置工具。支持自定义基准测试和库集成。通过夜间CI运行,持续评估PyTorch最新版本性能。
chronos-t5-base - T5架构驱动的时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测机器学习模型预训练模型
Chronos-T5-Base是一款基于T5架构的时间序列预测基础模型,具有2亿参数规模。该模型将时间序列转换为token序列,通过交叉熵损失训练,能够生成多样化的概率性预测。Chronos-T5-Base在大量公开时间序列数据和合成数据上进行了预训练,适用于广泛的时间序列预测场景。研究人员和开发者可以通过Python接口轻松调用该模型,实现高效的时间序列分析和预测。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
tsflex - 高效灵活的时间序列处理和特征提取Python工具包
GithubPython库tsflex开源项目数据分析时间序列处理特征提取
tsflex是一个Python工具包,用于时间序列处理和特征提取。它支持多变量、多模态时间序列数据,并可与多种处理和特征提取库集成。tsflex采用基于视图的操作,实现低内存占用和快速执行。该工具包提供直观的API,对序列数据几乎没有假设,能处理异步数据。此外,tsflex还具备特征选择、执行时间记录和序列化等高级功能。
pytorch-seq2seq - 使用PyTorch实现序列到序列模型的教程
GithubPyTorchseq2seq开源项目机器翻译神经网络翻译
该项目提供一系列使用PyTorch实现seq2seq模型的教程,特别是对德语到英语的翻译。教程涵盖了seq2seq网络的基础、编码器-解码器模型、注意机制以及使用spaCy进行数据分词,并提供了详细的代码和示例,帮助学习者深入理解和应用相关技术。
Large-Time-Series-Model - 大规模生成式预训练时间序列模型
GithubTimerTransformer大规模数据集开源项目时间序列模型预训练
Timer是一款基于生成式预训练Transformer的大规模时间序列模型。该模型在包含10亿时间点的UTSD数据集上预训练,可用于预测、插值和异常检测等多项任务。Timer采用解码器架构,支持灵活序列长度,在少样本场景下表现优异。项目开源了模型代码、数据集和预训练权重,为时间序列大模型研究奠定基础。
chronos-forecasting - 基于语言模型架构的预训练时间序列预测工具
AutoGluonChronosGithub开源项目时间序列语言模型预训练
Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。
pymc - Python贝叶斯统计建模与概率编程框架
GithubPyMCPython包变分推断开源项目贝叶斯统计建模马尔可夫链蒙特卡洛
PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号