Project Icon

SAT

突破性医学图像分割模型,支持多模态多区域文本提示

SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。

medical-datasets - 医学影像数据集汇总 从MRI到X射线的全面资源
CTGithubMRIX光分割标注医学影像数据集开源项目
medical-datasets是一个综合性医学影像数据集资源库,收录了MRI、CT和X射线等多种模态的影像数据。涵盖从大脑到胸部的多个人体部位,不仅包含原始图像,还提供分割标注和临床诊断等信息。该项目为医学影像分析、人工智能和机器学习领域的研究与应用提供了丰富的数据支持。
Pytorch-Medical-Segmentation - 基于PyTorch的医学图像分割框架 支持2D和3D多模态分析
GithubPytorch医学图像分割开源项目深度学习神经网络
Pytorch-Medical-Segmentation是一个开源医学图像分割框架,支持2D和3D多模态分析。该项目集成多种先进算法,兼容主流医学影像格式,提供灵活配置选项。内置训练推理流程和评估指标,便于研究人员和开发者快速实现各类医学图像分割任务。
LViT - 结合语言和视觉Transformer的医学图像分割技术
GithubLViTVision Transformer医学图像分割开源项目数据集深度学习
LViT是一种创新的医学图像分割方法,融合了语言信息和视觉Transformer。该技术在QaTa-COV19、MosMedData+和MoNuSeg等多个数据集上展现出优异性能,大幅提升了分割精度。项目包含完整代码实现、数据准备指南、训练评估流程及详细实验结果。除常规任务外,LViT在结肠息肉和食管CT等特定领域分割中也表现出色。
MT-UNet - 融合Transformer和UNet的医学图像分割新模型
GithubMT-UNet医学图像分割开源项目数据集准备权重文件模型训练
MT-UNet是一种结合Transformer和UNet优势的医学图像分割模型。该模型在Synapse和ACDC数据集上分别达到79.20%和91.61%的DSC评分。MT-UNet通过混合transformer结构实现多尺度特征融合,为医学图像分析提供新思路。项目开源代码和预训练权重,便于研究者复现结果和深入研究。
sam-vit-huge - SAM 革新性的通用图像分割模型
AI模型GithubHuggingfaceSAM图像分割开源项目模型深度学习计算机视觉
Segment Anything Model (SAM) 是Facebook Research开发的先进图像分割模型。它能根据点或框等简单提示生成精确的对象蒙版,在1100万图像和11亿蒙版的大规模数据集上训练。SAM具备强大的零样本迁移能力,可应用于多种分割任务。模型由视觉编码器、提示编码器和蒙版解码器构成,既可生成单个目标蒙版,也能自动分割整图所有对象。SAM为计算机视觉领域带来了新的可能性。
EfficientSAM - 基于掩码预训练的实时图像分割模型
EfficientSAMGithub分割模型图像处理开源项目深度学习计算机视觉
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。
SLANTbrainSeg - 全脑高分辨率MRI深度学习分割工具
GithubSLANT医学影像开源项目深度学习神经影像学脑部分割
SLANTbrainSeg是一款开源的全脑高分辨率MRI分割工具,采用人工智能深度学习技术。它可将T1 MRI扫描分割为133个标签,符合BrainCOLOR协议。项目提供Docker镜像,支持GPU和CPU,操作简便。SLANTbrainSeg在分割精度和效率上表现出色,适用于神经影像研究和临床分析。
TransBTS - 使用Transformer实现多模态脑肿瘤医学图像分割
GithubTransBTSTransBTSV2Transformer多模态数据集开源项目脑肿瘤分割
TransBTS与TransBTSV2采用Transformer技术显著提升多模态脑肿瘤与医学图像体积分割的效率与准确性。项目包括详细的模型实现和相关文献,支持BraTS、LiTS、KiTS等医学图像数据集,并利用Python和Pytorch进行数据预处理、模型训练和测试,支持分布式训练。适用于需要高效精准医学图像分割解决方案的研究人员和工程师。
ModelsGenesis - 3D医疗影像自监督预训练模型
3D医学影像GithubModels Genesis医学图像分析开源项目自学习迁移学习
此项目推出了名为Generic Autodidactic Models的预训练模型,专为3D医学影像应用设计,特别适合标注数据有限的情况。这一模型通过自监督学习实现自我训练,无需人工标注,并能生成各种应用场景的目标模型。Models Genesis性能显著优于从零开始训练的3D模型,甚至超过了包括ImageNet模型在内的2D方法,尤其在分割肝脏、肿瘤和海马体方面表现卓越。
UCTransNet - 融合U-Net与Transformer的医学图像分割网络
GithubTransformerU-NetUCTransNet医学图像分割开源项目深度学习
UCTransNet是一种结合U-Net和Transformer优势的医学图像分割网络。它通过Channel Transformer模块替代U-Net的跳跃连接,从通道维度优化特征融合。该模型在GlaS和MoNuSeg等数据集上表现优异,为医学影像分析提供新思路。项目开源代码实现和预训练模型,并提供详细使用说明,方便研究者探索和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号