Project Icon

SAT

突破性医学图像分割模型,支持多模态多区域文本提示

SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。

HuatuoGPT - 专业中文医疗咨询语言模型
GithubHuatuoGPT人工智能医生医疗咨询医疗大语言模型医疗数据集开源项目
HuatuoGPT是基于大规模中文医疗语料训练的语言模型,旨在为医疗咨询场景构建专业AI助手。项目发布了混合SFT数据集、模型权重、在线演示和医疗场景评估基准。通过结合ChatGPT提炼数据和真实医生数据,HuatuoGPT提供快速医疗咨询服务,同时强调在实际应用前进行全面评估的重要性。
LLaVA-Med - 生物医学视觉语言模型助力图像分析与智能问答
GithubLLaVA-Med多模态大语言模型开源项目生物医学视觉问答
LLaVA-Med是一个针对生物医学领域的大规模语言和视觉模型。该模型通过课程学习方法对LLaVA进行了生物医学领域适应,在PathVQA和VQA-RAD等开放式生物医学问答任务中表现优异。LLaVA-Med支持多模态对话和视觉问答,为生物医学视觉语言处理研究提供了有力工具。需要注意的是,此模型仅供研究使用,不适用于临床决策。
sam-vit-large - 高性能AI图像分割模型 多种输入方式生成精确物体遮罩
GithubHuggingfaceSegment Anything Model图像分割开源项目模型深度学习计算机视觉零样本学习
sam-vit-large是Segment Anything Model (SAM)的一个版本,由Facebook开发。这是一个先进的计算机视觉模型,可根据点、框等输入生成高精度物体遮罩。经过1100万图像和11亿遮罩的训练,该模型展现出优秀的零样本性能。它能自动生成图像中所有物体的遮罩,适用于多种图像分割任务,为计算机视觉研究提供了新的基础工具。
visual-med-alpaca - 生物医学多模态AI模型实现图像理解和复杂问答
AIGithubLLMVisual Med-Alpaca多模态开源项目生物医学
Visual Med-Alpaca是一个参数高效的开源生物医学基础模型,集成了多模态能力。基于LLaMa-7B架构,该模型通过指令微调和视觉模块扩展,可执行放射影像解读和复杂临床问答等任务。仅需一张消费级GPU即可运行,为生物医学领域提供了灵活高效的AI研究工具。该项目仅供学术研究使用。
sssegmentation - 开源语义分割工具箱 集成多种先进算法和模型
GithubPyTorch开源工具开源项目深度学习计算机视觉语义分割
sssegmentation是基于PyTorch的开源语义分割工具箱,提供高性能、模块化设计和统一基准测试。它集成多种流行分割框架,支持各类backbone网络和分割器模型,包括SAM、MobileSAM等最新技术。该项目为语义分割研究和应用开发提供灵活易用的平台。
Sunsimiao - 中文医疗大模型,提供全面诊疗建议
CMB-ExamGithubQwen2-7BSunsimiao中文医疗大模型开源项目高质量医疗数据
孙思邈中文医疗大模型结合孙思邈的医学理念和高质量中文医疗数据,旨在提供广泛的诊疗建议。该模型在多个医疗考试中表现出色,由华东理工大学发起,得到多家组织支持。训练数据涵盖医疗文献、教材、诊断数据和问诊对话,持续更新并通过人工与自动化处理以确保高质量。
MobileSAM - 高效轻量化图像分割模型,适用于移动设备
AI模型GithubMobileSAM图像分割开源项目深度学习计算机视觉
MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。
U-KAN - 提升医学图像分割和生成效能的创新框架
GithubU-KAN医学图像分割医学图像生成开源项目深度学习计算机视觉
U-KAN是一个将Kolmogorov-Arnold网络(KAN)层整合到U-Net结构中的医学图像处理框架。这种创新设计在提高图像分割和生成任务准确性的同时,降低了计算成本。U-KAN在多个医学图像数据集的分割任务中表现出色,并在图像生成领域展现潜力。这项研究为医学图像处理技术的进步提供了新思路,有望推动更精准、高效的诊断和分析工具的发展。
med-seg-diff-pytorch - PyTorch实现的医学图像分割扩散模型
DDPMGithubPytorch医学图像分割开源项目扩散概率模型深度学习
med-seg-diff-pytorch是一个基于PyTorch的医学图像分割框架,采用扩散概率模型(DDPM)和特征级条件增强技术。该项目提供简易安装和使用方法,支持自定义数据集训练,并计划增加更多功能。它为医学图像分析领域提供了一个功能强大、使用灵活的开源工具。
x-unet - 集成高效注意力机制的先进U-Net框架
GithubU-Net图像分割开源项目深度学习神经网络计算机视觉
x-unet是一个基于U-Net架构的开源项目,融合了高效注意力机制和最新研究成果。支持2D和3D图像处理,提供嵌套U-Net深度和上采样特征图合并等灵活配置。适用于生物医学图像分割和显著对象检测等任务,是一个功能强大的深度学习工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号