Project Icon

pytorch_connectomics

PyTorch Connectomics加速大脑神经连接图谱构建

PyTorch Connectomics是一个面向神经科学领域的开源深度学习框架,专门用于处理电子显微镜采集的大脑图像数据。该框架支持连接组学中的自动和半自动语义及实例分割,提供多任务学习、主动学习和半监督学习功能。它采用分布式和混合精度优化技术,能高效处理大规模数据集。框架包含多种编码器-解码器架构,如定制3D UNet和特征金字塔网络模型,并提供全面的体积数据增强功能。由哈佛大学视觉计算组维护,PyTorch Connectomics致力于加速大脑神经连接图谱的重建过程。

semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
speechbrain - 加速对话AI开发的开源PyTorch工具包
GithubPyTorchSpeechBrain人工智能开源项目聊天机器人语音处理
SpeechBrain是一个基于PyTorch的开源框架,专注于对话AI技术的快速开发,涵盖语音助手、聊天机器人和大型语言模型。该项目包含超过200个训练配方,覆盖40个数据集进行20种语音和文本处理任务。支持从零开始构建模型或微调如Whisper、Wav2Vec2等预训练模型。此外,SpeechBrain通过30多个Google Colab教程促进教育和学习,帮助用户深入了解对话AI系统。
LibtorchSegmentation - 高性能C++图像分割库
C++库GithubLibTorch图像分割开源项目神经网络预训练模型
LibtorchSegmentation是基于LibTorch的C++图像分割库,提供高级API和多种模型架构。支持15种预训练编码器,推理速度比PyTorch CUDA快35%。该库简单易用yet功能强大,适合快速开发和部署各类图像分割应用。
edge-connect - 通过生成对抗网络模型提高细节再现的图像修复方法
EdgeConnectGithubPython图像修复开源项目生成对抗网络边缘生成器
EdgeConnect是一种新的图像修复方法,通过生成对抗网络模型提高细节再现。该方法包含两个步骤:首先生成图像中缺失区域的边缘,然后根据生成的边缘信息填补图像。此方法适用于Places2、CelebA及Paris Street-View等数据集。EdgeConnect引入新的边缘生成和图像补全技术,使修复结果更为真实自然。该项目基于Python和PyTorch实现,支持CUDA加速,提供完整的训练、测试和评估指南,并且免费提供预训练模型下载使用。
pytorch-receptive-field - PyTorch CNN感受野计算与可视化工具
CNNGithubpytorch-receptive-field可视化开源项目感受野神经网络
pytorch-receptive-field是一个专门用于计算和可视化卷积神经网络(CNN)感受野的开源工具。该工具支持2D和3D CNN,能生成直观的感受野2D动画图。它易于集成到PyTorch项目中,可计算整个网络或特定层的感受野大小。这对于分析和优化CNN架构提供了重要参考。
pytorch-dnc - PyTorch实现的差分神经计算机及相关模型库
DNCGithubSAMSDNC开源项目神经网络记忆增强
这个PyTorch库实现了差分神经计算机(DNC)、稀疏访问存储器(SAM)和稀疏差分神经计算机(SDNC)等模型。它提供灵活API用于构建和训练这些神经网络,支持多层控制器、共享内存等配置。库中还包含复制和加法等基准任务,以及内存可视化功能,有助于开发和评估基于外部存储的神经网络模型。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
flashtorch - 基于PyTorch的神经网络可视化工具
FlashTorchGithubPyTorch可视化开源项目特征可视化神经网络
FlashTorch是基于PyTorch的神经网络可视化工具,通过简单的接口实现特征可视化技术,如显著性图和激活最大化。该工具兼容torchvision预训练模型和自定义PyTorch模型,有助于研究人员和开发者理解、解释及优化神经网络的内部工作机制。FlashTorch仅需几行代码即可应用,为深入分析神经网络提供了便捷途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号